DOI QR코드

DOI QR Code

Structure and Properties of a Nonheme Pentacoordinate Iron(II) Complex with a Macrocyclic Triazapyridinophane Ligand

  • You, Minyoung (Department of Chemistry, Division of Nano Sciences, Ewha Womans University) ;
  • Seo, Mi Sook (Department of Chemistry, Division of Nano Sciences, Ewha Womans University) ;
  • Kim, Kwan Mook (Department of Chemistry, Division of Nano Sciences, Ewha Womans University) ;
  • Nam, Wonwoo (Department of Chemistry, Division of Nano Sciences, Ewha Womans University) ;
  • Kim, Jinheung (Department of Chemistry, Division of Nano Sciences, Ewha Womans University)
  • Published : 2006.08.20

Abstract

A macrocyclic ligand, N,N',N'-tribenzyl-2,11,20-triaza[3,3,3](2,6)pyridinophane (BAPP), was used to prepare an iron(II) complex as a nonheme model complex, $[(BAPP)Fe]^{+2}$ (1). X-ray crystallography of a colorless crystal of 1 revealed that BAPP acted as a pentadentate ligand due to geometrical strain for the formation of a six-coordinate iron(II) complex by BAPP. As a result, the iron center revealed a significantly distorted square pyramidal geometry similar to that found in the active site of taurine dioxygenase (tauD). In the reaction of 1 with PhIO, no intermediate was observed in the UV-visible region of spectrometer at low temperatures. Catalytic oxidations of triphenyl phosphine with PhIO at ${-40^{\circ}C}$ revealed that 1 was able to convert triphenyl phosphine to triphenyl phosphine oxide.23; SSOCHKThioanisole was also oxidized to the corresponding methylphenyl sulfoxide under the same conditions.

Keywords

References

  1. Borovik, A. S. Acc. Chem. Res. 2005, 38, 54 https://doi.org/10.1021/ar030160q
  2. Neidig, M. L.; Solomon, E. I. Chem. Commun. 2005, 5843
  3. Abu-Omar, M. M.; Loaiza, A.; Hontzeas, N. Chem. Rev. 2005, 105, 2227 https://doi.org/10.1021/cr040653o
  4. Decker, A.; Solomon, E. I. Curr. Opin. Chem. Biol. 2005, 9, 152 https://doi.org/10.1016/j.cbpa.2005.02.012
  5. Kryatov, S. V.; Rybak-Akimova, E. V. Chem. Rev. 2005, 105, 2175 https://doi.org/10.1021/cr030709z
  6. Martinho, M.; Banse, F.; Bartoli, J.-F.; Mattioli, T. A.; Battioni, P.; Horner, O.; Bourcier, S.; Girerd, J.-J. Inorg. Chem. 2005, 44, 9592 https://doi.org/10.1021/ic051213y
  7. Balland, V.; Charlot, M.-F.; Banse, F.; Girerd, J.-J.; Mattioli, T. A.; Bill, E.; Bartoli, J.-F.; Battioni, P.; Mansuy, D. Eur. J. Inorg. Chem. 2004, 301
  8. Bukowski, M. R.; Koehntop, K. D.; Stubna, A.; Bominaar, E. L.; Halfen, J. A.; Munck, E.; Nam, W.; Que, L., Jr. Science 2005, 310, 1000 https://doi.org/10.1126/science.1119092
  9. Sastri, C. V.; Seo, M. S.; Park, M. J.; Kim, K. M.; Nam, W. Chem. Commun. 2005, 1405
  10. Sastri, C. V.; Park, M. J.; Ohta, T.; Jackson, T. A.; Stubna, A.; Seo, M. S.; Lee, J.; Kim, J.; Kitagawa, T.; Munck, E.; Que, L. J.; Nam, W. J. Am. Chem. Soc. 2005, 127, 12494 https://doi.org/10.1021/ja0540573
  11. Oh, N. Y.; Suh, Y.; Park, M. J.; Seo, M. S.; Kim, J.; Nam, W. Angew. Chem. Int. Ed. Engl. 2005, 44, 4235 https://doi.org/10.1002/anie.200500623
  12. Klinker, E. J.; Kaizer, J.; Brennessel, W. W.; Woodrum, N. L.; Cramer, C. J.; Que, L. J. Angew. Chem. Int. Ed. Engl. 2005, 44, 4235 https://doi.org/10.1002/anie.200500623
  13. Kim, S. O.; Sastri, C. V.; Seo, M. S.; Kim, J.; Nam, W. J. Am. Chem. Soc. 2005, 127, 4178 https://doi.org/10.1021/ja043083i
  14. Kaizer, J.; Klinker, E. J.; Oh, N. Y.; Rohde, J.-U.; Song, W. J.; Stubna, A.; Kim, J.; Munck, E.; Nam, W.; L. Que, J. J. Am. Chem. Soc. 2004, 126, 472 https://doi.org/10.1021/ja037288n
  15. Rohde, J.-U.; In, J.-H.; Lim, M. H.; Brennessel, W. W.; Bukowski, M. R.; Stubna, A.; Munck, E.; Nam, W.; L. Que, J. Science 2003, 299, 1037 https://doi.org/10.1126/science.299.5609.1037
  16. Park, M. J.; Lee, J.; Suh, Y.; Kim, J.; Nam, W. J. Am. Chem. Soc. 2006, 128, 2630 https://doi.org/10.1021/ja055709q
  17. Seo, M. S.; Jang, H. G.; Kim, J.; Nam, W. Bull. Kor. Chem. Soc. 2005, 26, 971 https://doi.org/10.5012/bkcs.2005.26.6.971
  18. Suh, Y.; Seo, M. S.; Kim, K. M.; Kim, Y. S.; Jang, H. G.; Tosha, T.; Kitagawa, T.; Kim, J.; Nam, W. J. Inorg. Biochem. 2006, 100, 627 https://doi.org/10.1016/j.jinorgbio.2005.12.013
  19. Saltzman, H.; Sharefkin, J. G. Organic Syntheses; Wiley: New York, 1973; p 658
  20. Bottino, F.; de Grazia, M.; Finocchario, P.; Frinczek, F. R.; Mamo, A.; Pappalardo, S. J. Org. Chem. 1988, 53, 3521 https://doi.org/10.1021/jo00250a020
  21. Bukowski, M. R.; Comba, P.; Limberg, C.; Merz, M.; Que, L. J.; Wistuba, T. Angew. Chem. Int. Ed. Engl. 2004, 43, 1283 https://doi.org/10.1002/anie.200352523
  22. Zang, Y.; Kim, J.; Dong, Y.; Wilkinson, E. C.; Appelman, E. H.; Que, L. J. J. Am. Chem. Soc. 1997, 119, 4197 https://doi.org/10.1021/ja9638521
  23. Roelfes, G.; Lubben, M.; Chen, K.; Ho, R. Y. N.; Meetsma, A.; Genseberger, S.; NHermant, R. M.; Hage, R.; Mandal, S. K.; Young, J. V. G.; Zang, Y.; Koojiman, H.; Spek, A. L.; Que, L. J.; Feringa, B. L. Inorg. Chem. 1999, 38, 1929 https://doi.org/10.1021/ic980983p
  24. Lubben, M.; Meetsma, A.; Wilkinson, E. C.; Feringa, B. L.; Que, L. J. Angew. Chem. Int. Ed. Engl. 1995, 34, 1512 https://doi.org/10.1002/anie.199515121
  25. Chen, K.; Que, L. J. J. Am. Chem. Soc. 2001, 123, 6327 https://doi.org/10.1021/ja010310x
  26. Chen, K.; Costas, M.; Kim, J.; Tipton, A. K.; Que, L. J. J. Am. Chem. Soc. 2002, 124, 3026 https://doi.org/10.1021/ja0120025
  27. Roelfes, G.; Vraymasu, V.; Chen, K.; Ho, R. Y. N.; Rohde, J.-U.; Zondervan, C.; La Crois, R. M.; Schudde, E. P.; Lutz, M.; Spek, A. L.; Hage, R.; Feringa, B.; Munck, E.; Que, L. J. Inorg. Chem. 2003, 42, 2639 https://doi.org/10.1021/ic034065p
  28. Zalkin, A.; Templeton, D. H.; Ueki, T. Inorg. Chem. 1973, 12, 1641 https://doi.org/10.1021/ic50125a033
  29. Posse, G. M. E.; Juri, M. A.; Aymonino, P. J.; Piro, O. E.; Negri, H. A.; Castellano, E. E. Inorg. Chem. 1984, 23, 948 https://doi.org/10.1021/ic00175a030
  30. Mehn, M. P.; Fujisawa, K.; Hegg, E. L.; Que, L. J. J. Am. Chem. Soc. 2003, 125, 7828 https://doi.org/10.1021/ja028867f
  31. Brown, I. D.; Altermatt, D. Acta Crystallogr. 1985, B41, 244
  32. Whangbo, M.-H.; Torardi, C. C. Science 1990, 249, 1143 https://doi.org/10.1126/science.249.4973.1143
  33. Thorp, H. H. Inorg. Chem. 1992, 31, 1585 https://doi.org/10.1021/ic00035a012
  34. O'Sullivan, C.; Murphy, G.; Murphy, B.; Hathaway, B. J. Chem. Soc., Dalton Trans. 1999, 1835
  35. Addison, A. W.; Nageswara Rao, T.; Reedijk, J.; van Rijn, J.; Verschoor, G. C. J. Chem. Soc., Dalton Trans. 1984, 1349

Cited by

  1. A strong-field pentadentate ligand in iron-based alkane oxidation catalysis and implications for iron(iv) oxo intermediates vol.3, pp.4, 2013, https://doi.org/10.1039/c3cy20823k
  2. Coordination Equilibria Between Seven- and Five-coordinate Iron(II) Complexes vol.52, pp.20, 2013, https://doi.org/10.1021/ic401416h
  3. What factors influence the reactivity of C–H hydroxylation and C=C epoxidation by [FeIV(Lax)(1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane)(O)]n+ vol.20, pp.7, 2015, https://doi.org/10.1007/s00775-015-1294-y
  4. A Two-State Reactivity Rationale for Counterintuitive Axial Ligand Effects on the CH Activation Reactivity of Nonheme FeIVO Oxidants vol.14, pp.6, 2008, https://doi.org/10.1002/chem.200701739
  5. Theoretical study of cyclohexane hydroxylation by three possible isomers of [FeIV(O)(R-TPEN)]2+: does the pentadentate ligand wrapping around the metal center differently lead to the different stability and reactivity? vol.14, pp.4, 2009, https://doi.org/10.1007/s00775-009-0468-x
  6. Oxidation of N-Methylanilines by a Nonheme Iron(IV)-Oxo Complex vol.28, pp.5, 2006, https://doi.org/10.5012/bkcs.2007.28.5.843
  7. Synthesis and Reactivity of a Mononuclear Manganese(II) Complex Having Pseudo-Seven Coordination Environment vol.30, pp.3, 2006, https://doi.org/10.5012/bkcs.2009.30.3.679
  8. Interplay Between Steric and Electronic Effects: A Joint Spectroscopy and Computational Study of Nonheme Iron(IV)‐Oxo Complexes vol.25, pp.19, 2006, https://doi.org/10.1002/chem.201806430