DOI QR코드

DOI QR Code

Selective Chemosensing of Hg2+ Ions by Diazatetrathia-crown Ether Having Nitrobenzoxadiazolyl Subunits

  • Published : 2006.10.20

Abstract

A diazatetrathia crown ether derivative that has two appended nitrobenzoxadiazolyl moieties showed selective OFF-ON type fluoroionophoric signaling properties toward Hg2+ ions over other transition metal ions. The compound also exhibited a pronounced chromogenic behavior toward Hg2+ ions by changing the solution color from light orange to yellow, which can easily be detected with naked-eye. The detection limit for the analysis of Hg2+ ions in 90% aqueous acetonitrile was found to be 4.8??10-6 M, which suggests that the compound may be used as a chemosensor for analyzing sub-millimolar Hg2+ ions in aqueous environments.

Keywords

References

  1. Desvergne, J. P.; Czarnik, A. W. Chemosensors of Ion and Molecule Recognition; Kluwer: Dordrecht, 1997
  2. Fluorescent Chemosensors for Ion and Molecule Recognition; Czarnik, A. W., Ed.; American Chemical Society: Washington, DC, 1992
  3. de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. Rev. 1997, 97, 1515 https://doi.org/10.1021/cr960386p
  4. Boening, D. W. Chemosphere 2000, 40, 1335 https://doi.org/10.1016/S0045-6535(99)00283-0
  5. Clevenger, W. L.; Smith, B. W.; Winefordner, J. D. Crit. Rev. Anal. Chem. 1997, 27, 1 https://doi.org/10.1080/10408349708050578
  6. Nolan, E. M.; Lippard, S. J. J. Am. Chem. Soc. 2003, 125, 14270 and references therein https://doi.org/10.1021/ja037995g
  7. Guo, X.; Qian, X.; Jia, L. J. Am. Chem. Soc. 2004, 126, 2272 https://doi.org/10.1021/ja037604y
  8. Moon, S. Y.; Cha, N. R.; Kim, Y. H.; Chang, S.-K. J. Org. Chem. 2004, 69, 181 https://doi.org/10.1021/jo034713m
  9. Chen, P.; He, C. J. Am. Chem. Soc. 2004, 126, 728 https://doi.org/10.1021/ja0383975
  10. Thomas, J. M.; Ting, R.; Perrin, D. M. Org. Biomol. Chem. 2004, 2, 307 https://doi.org/10.1039/b310154a
  11. Ono, A.; Togashi, H. Angew. Chem. Int. Ed. 2004, 43, 4300 https://doi.org/10.1002/anie.200454172
  12. Ros-Lis, J. V.; Marcos, M. D.; Martínez-Máñez, R.; Rurack, K.; Soto, J. Angew. Chem. Int. Ed. 2005, 44, 4405 https://doi.org/10.1002/anie.200500583
  13. Zhang, H.; Han, L.-F.; Zachariasse, K. A.; Jiang, Y.-B. Org. Lett. 2005, 7, 4217 https://doi.org/10.1021/ol051614h
  14. Yoon, S.; Albers, A. E.; Wong, A. P.; Chang, C. J. J. Am. Chem. Soc. 2005, 127, 16030 https://doi.org/10.1021/ja0557987
  15. Yang, Y. K.; Yook, K. J.; Tae, J. J. Am. Chem. Soc. 2005, 127, 16760 https://doi.org/10.1021/ja054855t
  16. Zheng, H.; Qian, Z.-H.; Xu, L.; Yuan, F.-F.; Lan, L.-D.; Xu, J.-G. Org. Lett. 2006, 8, 859 https://doi.org/10.1021/ol0529086
  17. Beer, P. D.; Nation, J. E.; McWhinnie, S. L. W.; Harman, M. E.; Hursthouse, M. B.; Ogden, M. I.; White, A. H. J. Chem. Soc. Dalton Trans. 1991, 2485
  18. Beer, P. D.; Wheeler, J. W.; Moore, C. P. J. Chem. Soc. Dalton Trans. 1992, 2667
  19. Tsukube, H.; Uenishi, J.; Higaki, H.; Kikkawa, K.; Tanaka, T.; Wakabayashi, S.; Oae, S. J. Org. Chem. 1993, 58, 4389 https://doi.org/10.1021/jo00068a038
  20. Bordunov, A. V.; Bradshaw, J. S.; Zhang, X. X.; Dalley, N. K.; Kou, X.; Izatt, R. M. Inorg. Chem. 1996, 35, 7229 https://doi.org/10.1021/ic9610290
  21. Blake, A. J.; Gould, R. O.; Li, W.-S.; Lippolis, V.; Parsons, S.; Radek, C.; Schröder, M. Angew. Chem. Int. Ed. 1998, 37, 293 https://doi.org/10.1002/(SICI)1521-3773(19980216)37:3<293::AID-ANIE293>3.0.CO;2-5
  22. Love, J. B.; Vere, J. M.; Glenny, M. W.; Blake, A. J.; Schroder, M. Chem. Commun. 2001, 2678
  23. Kwon, J. Y.; Soh, J. H.; Yoon, Y. J.; Yoon, J. Supramol. Chem. 2004, 16, 621 https://doi.org/10.1080/10610270412331320662
  24. Kim, S. H.; Song, K. C.; Ahn, S.; Kang, Y. S.; Chang, S.-K. Tetrahedron Lett. 2006, 47, 497 https://doi.org/10.1016/j.tetlet.2005.11.060
  25. Sakamoto, H.; Ishikawa, J.; Nakao, S.; Wada, H. Chem. Commun. 2000, 2395
  26. Oe, T.; Morita, M.; Toyo'oka, T. Anal. Sci. 1999, 15, 1021 https://doi.org/10.2116/analsci.15.1021
  27. Boiocchi, M.; Fabbrizzi, L.; Licchelli, M.; Sacchi, D.; Vázquez, M.; Zampa, C. Chem. Commun. 2003, 1812
  28. Fabbrizzi, L.; Licchelli, M.; Poggi, A.; Sacchi, D.; Zampa, C. Polyhedron 2004, 23, 373 https://doi.org/10.1016/j.poly.2003.11.024
  29. Callan, J. F.; de Silva, A. P.; Ferguson, J.; Huxley, A. J. M.; O'Brien, A. M. Tetrahedron 2004, 60, 11125 https://doi.org/10.1016/j.tet.2003.11.069
  30. Onoda, M.; Tokuyama, H.; Uchiyama, S.; Mawatari, K.; Santa, T.; Kaneko, K.; Imai, K.; Nakagomi, K. Chem. Commun. 2005, 1848
  31. Gunnlaugsson, T.; Kruger, P. E.; Jensen, P.; Tierney, J.; Ali, H. D. P.; Hussey, G. M. J. Org. Chem. 2005, 70, 10875 https://doi.org/10.1021/jo0520487
  32. Kuzmic , P. Anal. Biochem. 1996, 237, 260, The software DynaFit can be obtained from BioKin, Ltd at http://www.biokin.com https://doi.org/10.1006/abio.1996.0238
  33. Uchiyama, S.; Santa, T.; Fukushima, T.; Homma, H.; Imai, K. J. Chem. Soc. Perkin Trans. 2 1998, 2165
  34. Rurack, K. Spectrochim. Acta, Part A 2001, 57, 2161 https://doi.org/10.1016/S1386-1425(01)00492-9
  35. Wang, J.; Qian, X. Chem. Commun. 2006, 109
  36. Banthia, S.; Samanta, A. New J. Chem. 2005, 29, 1007 https://doi.org/10.1039/b504823k
  37. Shortreed, M.; Kopelman, R.; Kuhn, M.; Hoyland, B. Anal. Chem. 1996, 68, 1414 https://doi.org/10.1021/ac950944k
  38. Hay, R. W. Bio-inorganic Chemistry; Ellis Horwood: Chichester, 1984; p 10

Cited by

  1. Fluorescent Sensor Derived from an Intramolecular Charge Transfer Fluorophore and Its in Vitro and in Vivo Application vol.131, pp.4, 2009, https://doi.org/10.1021/ja806489y
  2. A fluorometric/colorimetric dual-channel Hg2+ sensor derived from a 4-amino-7-nitro-benzoxadiazole (ANBD) fluorophore vol.35, pp.3, 2011, https://doi.org/10.1039/c0nj00773k
  3. A new turn-on fluorescent sensor based on NBD for highly selective detection of Hg2+ in aqueous media and imaging in live cells vol.6, pp.13, 2014, https://doi.org/10.1039/c4ay00729h
  4. Synthesis and Binding Properties of 1,3,5-Tris(2-arylthiomethyl)mesitylene: A Selective Ag (I) Ionophore vol.29, pp.2, 2006, https://doi.org/10.5012/bkcs.2008.29.2.417
  5. Pyrene Appended Hg2+-selective Fluoroionophore Based upon Diaza-Crown Ether vol.29, pp.3, 2006, https://doi.org/10.5012/bkcs.2008.29.3.567
  6. Rhodamine B Hydrazide Revisited: Chemodosimetric Hg2+-selective Signaling Behavior in Aqueous Environments vol.29, pp.3, 2006, https://doi.org/10.5012/bkcs.2008.29.3.571
  7. Turn-on Type Chemosensing and Visualization of Hg2+ Ions by a Simple NBD Derivative vol.29, pp.8, 2006, https://doi.org/10.5012/bkcs.2008.29.8.1601
  8. Phosphorescent Azacrown Ether-appended Iridium (III) Complex for the Selective Detection of Hg2+ in Aqueous Acetonitrile vol.32, pp.1, 2006, https://doi.org/10.5012/bkcs.2011.32.1.122
  9. Two dansyl fluorophores bearing amino acid for monitoring Hg2+ in aqueous solution and live cells vol.67, pp.22, 2006, https://doi.org/10.1016/j.tet.2011.03.106
  10. A Fluorescent Chemosensor Based on 7-Nitrobenz-2-oxa-1,3-diazole (NBD) for the Selective Detection of Hg(II) vol.32, pp.8, 2011, https://doi.org/10.5012/bkcs.2011.32.8.2809
  11. Selectively and sensitively monitoring Hg2+ in aqueous buffer solutions with fluorescent sensors based on unnatural amino acids vol.161, pp.1, 2006, https://doi.org/10.1016/j.snb.2011.12.023
  12. 3,9-Dithia-6-azaundecane-appended Iridium (III) Complex for the Selective Detection of Hg2+ in Aqueous Acetonitrile vol.33, pp.10, 2006, https://doi.org/10.5012/bkcs.2012.33.10.3465
  13. Highly selective naphthalimide-based fluorescent probe for direct hydrogen sulfide detection in the environment vol.4, pp.63, 2006, https://doi.org/10.1039/c4ra04221b