References
- Bange, A.; Halsall, H. B.; Heineman, W. R. Biosens. Bioelectron. 2005, 20, 2488 https://doi.org/10.1016/j.bios.2004.10.016
- Kim, M.; Oh, S.; Durst, R. A. J. Microbiol. Biotechnol. 2003, 13, 509
- Lin, F. Y. H.; Sherman, P. M.; Li, D. Biomed. Microdevices 2004, 6, 125 https://doi.org/10.1023/B:BMMD.0000031749.02570.75
- Taylor, A. D.; Yu, Q.; Chen, S.; Homola, J.; Jiang, S. Sens. Actuators B 2005, 107, 202 https://doi.org/10.1016/j.snb.2004.11.097
- Park, S.; Worobo, R. W.; Durst, R. A. Crit. Rev. Biotechnol. 2001, 21, 27 https://doi.org/10.1080/20013891081674
- Lee, M. J.; Lee, N. Y.; Lee, S. K.; Park, S.; Kim, Y. S. Bull. Korean Chem. Soc. 2005, 26, 1539 https://doi.org/10.1007/s11814-009-0245-0
- Lee, N. Y.; Yamada, M.; Seki, M. Anal. Sci. 2004, 20, 483 https://doi.org/10.2116/analsci.20.483
- Yakovleva, J.; Davidsson, R.; Lobanova, A.; Bengtsson, M.; Eremin, S.; Laurell, T.; Emneus, J. Anal. Chem. 2002, 74, 2994 https://doi.org/10.1021/ac015645b
- Moore, S.; Stein, W. H. J. Biol. Chem. 1948, 176, 367
- Eiselt, P.; Lee, K. Y.; Mooney, D. J. Macromolecules 1999, 32, 5561 https://doi.org/10.1021/ma990514m
- Sato, K.; Tokeshi, M.; Kimura, H.; Kitamori, T. Anal. Chem. 2001, 73, 1213 https://doi.org/10.1021/ac000991z
- Yuan, Q.; Jiang, W.; An, L.; Christiansen, J. D.; Li, R. K. Y. J. Appl. Polym. Sci. 2005, 96, 1729 https://doi.org/10.1002/app.21639
Cited by
- Microfluidic one-step synthesis of alginate microspheres immobilized with antibodies vol.10, pp.88, 2013, https://doi.org/10.1098/rsif.2013.0566
- Low cost lab-on-a-chip prototyping with a consumer grade 3D printer vol.14, pp.16, 2014, https://doi.org/10.1039/C4LC00394B
- PDMS lab-on-a-chip fabrication using 3D printed templates vol.14, pp.2, 2014, https://doi.org/10.1039/C3LC50956G
- 3D Printed Unibody Lab-on-a-Chip: Features Survey and Check-Valves Integration vol.6, pp.4, 2015, https://doi.org/10.3390/mi6040437
- Plasma nanotextured polymeric lab-on-a-chip for highly efficient bacteria capture and lysis vol.16, pp.1, 2016, https://doi.org/10.1039/C5LC01217A
- Self-concentrating buoyant glass microbubbles for high sensitivity immunoassays vol.16, pp.3, 2016, https://doi.org/10.1039/C5LC01005E
- Fabrication of NOA microfluidic devices based on sequential replica molding vol.34, pp.5, 2017, https://doi.org/10.1007/s11814-017-0041-1
- A microfluidic device for bacteria detection in aqueous samples vol.32, pp.14, 2011, https://doi.org/10.1080/09593330.2010.548405
- Rapid detection of pathogens using antibody-coated microbeads with bioluminescence in microfluidic chips vol.12, pp.4, 2010, https://doi.org/10.1007/s10544-010-9421-6
- A multichannel microchip containing 16 chambers packed with antibody-functionalized beads for immunofluorescence assay pp.1618-2650, 2019, https://doi.org/10.1007/s00216-019-01601-y
- A Microfluidic Platform for Preconcentrating and Detecting Cu(II) with a Fluorescent Chemosensor and Cu(II)-Chelating Alginate Beads vol.29, pp.1, 2006, https://doi.org/10.5012/bkcs.2008.29.1.225
- Nanoscale Characterization of Escherichia coli Biofilm Formed under Laminar Flow Using Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM) vol.29, pp.11, 2008, https://doi.org/10.5012/bkcs.2008.29.11.2114
- Continuous Production of Immunoliposomes using a Microvalve-controlled Microfluidic Device (μFD) vol.34, pp.10, 2006, https://doi.org/10.5012/bkcs.2013.34.10.2921
- Technological Development of Antibody Immobilization for Optical Immunoassays: Progress and Prospects vol.45, pp.1, 2006, https://doi.org/10.1080/10408347.2014.881249