References
- Hench, L. L.; West, J. K. Chem. Rev. 1990, 90, 33 https://doi.org/10.1021/cr00099a003
- Dave, B. C.; Dunn, B.; Valentine, J. S.; Zink, J. I. Anal. Chem. 1994, 66, 1120A https://doi.org/10.1021/ac00094a001
- Lev, O.; Tsionsky, M.; Rabinovich, L.; Glezer, V.; Sampath, S.; Pankratov, I.; Jun, J. Anal. Chem. 1995, 67, 22A https://doi.org/10.1021/ac00097a001
- Lin, J.; Brown, C. W. Trends Anal. Chem. 1997, 16, 200 https://doi.org/10.1016/S0165-9936(97)00021-6
- Anvir, D.; Braun, S.; Lev, O.; Ottolenghi, M. Chem. Mater. 1994, 6, 1605 https://doi.org/10.1021/cm00046a008
- Avnir, D. Acc. Chem. Res. 1995, 28, 328 https://doi.org/10.1021/ar00056a002
- Wang, J. Anal. Chim. Acta 1999, 399, 21 https://doi.org/10.1016/S0003-2670(99)00572-3
- Walcarius, A. Chem. Mater. 2001, 13, 3351 https://doi.org/10.1021/cm0110167
- Gill, I. Chem. Mater. 2001, 13, 3404 https://doi.org/10.1021/cm0102483
- Lee, S.-M.; Lee, W.-Y. Bull. Korean Chem. Soc. 2002, 23, 1169 https://doi.org/10.5012/bkcs.2002.23.8.1169
- Topoglidis, E.; Cass, A. E. G.; Gilardi, G.; Sadeghi, S.; Beaumont, N.; Durrant, J. R. Anal. Chem. 1998, 70, 5111 https://doi.org/10.1021/ac980764l
- Topoglidis, E.; Cass, A. E. G.; O'Regan, B.; Durrant, J. R. J. Electroanal. Chem. 2001, 517, 20 https://doi.org/10.1016/S0022-0728(01)00673-8
- Yu, J.; Ju, H. Anal. Chem. 2002, 74, 3579 https://doi.org/10.1021/ac011290k
- Yu, J.; Liu, S.; Ju, H. Biosens. Bioelectron. 2003, 19, 401 https://doi.org/10.1016/S0956-5663(03)00199-4
- Liu, Z.; Liu, B.; Zhang, M.; Kong, J.; Deng, J. Anal. Chim. Acta 1999, 392, 135 https://doi.org/10.1016/S0003-2670(99)00247-0
- Liu, Z.; Liu, B.; Kong, J.; Deng, J. Anal. Chem. 2000, 72, 4707 https://doi.org/10.1021/ac990490h
- Liu, B.; Cao, Y.; Chen, D.; Kong, J.; Deng, J. Anal. Chim. Acta 2003, 478, 59 https://doi.org/10.1016/S0003-2670(02)01480-0
- Yang, Y.; Yang, H.; Yang, M.; Liu, Y.; Shen, G.; Yu, R. Anal. Chim. Acta 2004, 525, 213 https://doi.org/10.1016/j.aca.2004.07.071
- Zhu, N.; Zhang, A.; Wang, Q.; He, P.; Fang, Y. Anal. Chim. Acta 2004, 510, 163 https://doi.org/10.1016/j.aca.2004.01.017
- Dobson, K. D.; McQuilan, A. J. Langmuir 1997, 13, 3392 https://doi.org/10.1021/la962024i
- Fang, M.; Kaschak, D. M.; Sutorik, A. C.; Mallouk, T. E. J. Am. Chem. Soc. 1997, 119, 12184 https://doi.org/10.1021/ja972569e
- Wang, J.; Pamidi, P. V. A.; Jiang, M. Anal. Chim. Acta 1998, 360, 171 https://doi.org/10.1016/S0003-2670(97)00684-3
- Dong, S.; Kuwana, T. J. Electrchem. Soc. 1984, 131, 813 https://doi.org/10.1149/1.2115705
- Kim, M.-A.; Lee, W.-Y. Anal. Chim. Acta 2003, 479, 143 https://doi.org/10.1016/S0003-2670(02)01538-6
- Choi, H. N.; Kim, M. A.; Lee, W.-Y. Anal. Chim. Acta 2005, 537, 179 https://doi.org/10.1016/j.aca.2005.01.010
- Zhang, Z.; Liu, H.; Deng, J. Anal. Chem. 1996, 68, 1632 https://doi.org/10.1021/ac950431d
- Wang, J.; Park, D. S.; Pamidi, P. V. A. J. Electroanal. Chem. 1997, 434, 185 https://doi.org/10.1016/S0022-0728(97)00256-8
- Chut, S. L.; Li, J.; Tan, S. N. Analyst 1997, 122, 1431 https://doi.org/10.1039/a703383d
- Chen, X.; Cheng, G.; Dong, S. Analyst 2001, 126, 1728 https://doi.org/10.1039/b103787k
- Lee, W.-Y.; Lee, K. S.; Kim, T.-H.; Shin, M.-C.; Park, J.-K. Electroanalysis 2000, 12, 78 https://doi.org/10.1002/(SICI)1521-4109(20000101)12:1<78::AID-ELAN78>3.0.CO;2-B
- Karyakin, A. A.; Karyakina, E. K.; Gorton, L.; Bobrova, O. A.; Lukachova, L. V.; Gladilin, A. K.; Lesashov, A. V. Anal. Chem. 1996, 68, 4335 https://doi.org/10.1021/ac960397i
- Wang, B.; Li, B.; Deng, Q.; Dong, S. Anal. Chem. 1998, 70, 3170 https://doi.org/10.1021/ac980160h
- Quan, D.; Kim, Y.; Shin, W. J. Electroanal. Chem. 2004, 561, 181 https://doi.org/10.1016/j.jelechem.2003.08.003
- Heider, G. H.; Sasso, S. V.; Huang, K.-M.; Yacynych, A. M.; Wieck, H. J. Anal. Chem. 1990, 62, 1106 https://doi.org/10.1021/ac00210a003
- Chen, X.; Dong, S. Biosens. Bioelectron. 2003, 18, 999 https://doi.org/10.1016/S0956-5663(02)00221-X
- Carr, P. W.; Bowers, L. D. Immobilized Enzymes in Analytical and Clinical Chemistry; Wiley: New York, 1980; pp 26-30
- Yamanaka, S. A.; Nishida, F.; Ellerby, L. M.; Nishida, C. R.; Dunn, B.; Valentine, J. S.; Zink, J. I. Chem. Mater. 1992, 4, 495 https://doi.org/10.1021/cm00021a001
- Wang, J.; Pamidi, P. V.; Park, D. S. Anal. Chem. 1996, 68, 2705 https://doi.org/10.1021/ac960159n
Cited by
- Sol-gel-derived titanium oxide–cerium oxide biocompatible nanocomposite film for urea sensor vol.24, pp.05, 2009, https://doi.org/10.1557/jmr.2009.0212
- Nanostructured metal oxide-based biosensors vol.3, pp.1, 2011, https://doi.org/10.1038/asiamat.2010.137
- A general route to nanostructured M[V3O8] and Mx[V6O16] (x = 1 and 2) and their first evaluation for building enzymatic biosensors vol.22, pp.30, 2012, https://doi.org/10.1039/c2jm30485f
- Chemical and biological sensors based on metal oxide nanostructures vol.48, pp.84, 2012, https://doi.org/10.1039/c2cc34706g
- Development of a Novel Reusable Real Time Monitoring Glucose Sensor Based on Nanostructured Conducting Polyaniline (NSPANI) vol.03, pp.01, 2013, https://doi.org/10.4236/ijoc.2013.31010
- Mesoporous Zirconia Thin Films with Three-Dimensional Pore Structures and Their Application to Electrochemical Glucose Detection vol.5, pp.9, 2013, https://doi.org/10.1021/am303248p
- Nanostructured manganese oxide–chitosan-based cholesterol sensor vol.44, pp.8, 2014, https://doi.org/10.1007/s10800-014-0704-0
- Sol–gel synthesis and XPS study of vanadium pentoxide xerogels intercalated with glucose vol.71, pp.3, 2014, https://doi.org/10.1007/s10971-014-3385-6
- Nanorod arrays composed of zinc oxide modified with gold nanoparticles and glucose oxidase for enzymatic sensing of glucose vol.182, pp.3-4, 2015, https://doi.org/10.1007/s00604-014-1364-9
- Design of metal organic framework–enzyme based bioelectrodes as a novel and highly sensitive biosensing platform vol.3, pp.46, 2015, https://doi.org/10.1039/C5TB01412C
- A Comprehensive Review of Glucose Biosensors Based on Nanostructured Metal-Oxides vol.10, pp.5, 2010, https://doi.org/10.3390/s100504855
- Tris(2,2′-bipyridyl)ruthenium(II) Electrogenerated Chemiluminescence Sensor Based on Platinized Carbon Nanotube-Zirconia-Nafion Composite Films vol.22, pp.12, 2010, https://doi.org/10.1002/elan.200900586
- Highly Sensitive Ethanol Chemical Sensor Based on Novel Ag-Doped Mesoporous α–Fe2O3 Prepared by Modified Sol-Gel Process vol.13, pp.1, 2018, https://doi.org/10.1186/s11671-018-2572-8
- A nanostructured cerium oxide film-based immunosensor for mycotoxin detection vol.20, pp.5, 2009, https://doi.org/10.1088/0957-4484/20/5/055105
- Zinc oxide-chitosan nanobiocomposite for urea sensor vol.93, pp.16, 2008, https://doi.org/10.1063/1.2980448
- Nanoporous cerium oxide thin film for glucose biosensor vol.24, pp.7, 2006, https://doi.org/10.1016/j.bios.2008.10.032
- Lipase entrapment in a zirconia matrix: Sol–gel synthesis and catalytic properties vol.59, pp.1, 2006, https://doi.org/10.1016/j.molcatb.2009.01.010
- Nanostructured cerium oxide film for triglyceride sensor vol.141, pp.2, 2006, https://doi.org/10.1016/j.snb.2009.05.034
- Metal oxide–chitosan based nanocomposite for cholesterol biosensor vol.518, pp.2, 2006, https://doi.org/10.1016/j.tsf.2009.07.036
- Nanostructured zirconium oxide based genosensor for Escherichia coli detection vol.11, pp.12, 2009, https://doi.org/10.1016/j.elecom.2009.10.007
- Opportunities in nano-structured metal oxides based biosensors vol.358, pp.1, 2006, https://doi.org/10.1088/1742-6596/358/1/012007
- Influence of hole mobility on the response characteristics of p-type nickel oxide thin film based glucose biosensor vol.726, pp.None, 2012, https://doi.org/10.1016/j.aca.2012.03.027
- Direct electrochemistry of glucose oxidase immobilized on ZrO2 nanoparticles-decorated reduced graphene oxide sheets for a glucose biosensor vol.4, pp.57, 2014, https://doi.org/10.1039/c4ra04350b
- DNA mediated electrocatalytic enhancement of α-Fe2O3-PEDOT-C-MoS2hybrid nanostructures for riboflavin detection on screen printed electrode vol.6, pp.85, 2006, https://doi.org/10.1039/c6ra16279g
- CHEMICAL COMPOSITION STUDY OF VANADIUM PENTOXIDE XEROGELS DOPED BY BOVINE ALBUMIN vol.23, pp.6, 2006, https://doi.org/10.1142/s0218625x1650058x
- Chemistry, Structures, and Advanced Applications of Nanocomposites from Biorenewable Resources vol.120, pp.17, 2020, https://doi.org/10.1021/acs.chemrev.9b00553
- Current progress in organic-inorganic hetero-nano-interfaces based electrochemical biosensors for healthcare monitoring vol.452, pp.None, 2006, https://doi.org/10.1016/j.ccr.2021.214282