DOI QR코드

DOI QR Code

Amperometric Glucose Biosensor Based on Sol-Gel-Derived Zirconia/Nafion Composite Film as Encapsulation Matrix

  • Kim, Hyun-Jung (Department of Chemistry and Center for Bioactive Molecular Hybrids, Yonsei University) ;
  • Yoon, Sook-Hyun (Department of Chemistry and Center for Bioactive Molecular Hybrids, Yonsei University) ;
  • Choi, Han-Nim (Department of Chemistry and Center for Bioactive Molecular Hybrids, Yonsei University) ;
  • Lyu, Young-Ku (Department of Chemistry and Center for Bioactive Molecular Hybrids, Yonsei University) ;
  • Lee, Won-Yong (Department of Chemistry and Center for Bioactive Molecular Hybrids, Yonsei University)
  • Published : 2006.01.20

Abstract

An amperometric glucose biosensor has been developed based on the use of the nanoporous composite film of sol-gel-derived zirconia and perfluorosulfonated ionomer, Nafion, for the encapsulation of glucose oxidase (GOx) on a platinized glassy carbon electrode. Zirconium isopropoxide (ZrOPr) was used as a sol-gel precursor for the preparation of zirconia/Nafion composite film and the performance of the resulting glucose biosensor was tuned by controlling the water content in the acid-catalyzed hydrolysis of sol-gel stock solution. The presence of Nafion polymer in the sol-gel-derived zirconia in the biosensor resulted in faster response time and higher sensitivity compared to those obtained at the pure zirconia- and pure Nafion-based biosensors. Because of the nanoporous nature of the composite film, the glucose biosensor based on the zirconia/Nafion composite film can reach 95% of steady-state current less than 5 s. In addition, the biosensor responds to glucose linearly in the range of 0.03-15.08 mM with a sensitivity of 3.40 $\mu$A/mM and the detection limit of 0.037 mM (S/N = 3). Moreover, the biosensor exhibited good sensor-to-sensor reproducibility (~5%) and long-term stability (90% of its original activity retained after 4 weeks) when stored in 50 mM phosphate buffer at pH 7 at 4 ${^{\circ}C}$.

Keywords

References

  1. Hench, L. L.; West, J. K. Chem. Rev. 1990, 90, 33 https://doi.org/10.1021/cr00099a003
  2. Dave, B. C.; Dunn, B.; Valentine, J. S.; Zink, J. I. Anal. Chem. 1994, 66, 1120A https://doi.org/10.1021/ac00094a001
  3. Lev, O.; Tsionsky, M.; Rabinovich, L.; Glezer, V.; Sampath, S.; Pankratov, I.; Jun, J. Anal. Chem. 1995, 67, 22A https://doi.org/10.1021/ac00097a001
  4. Lin, J.; Brown, C. W. Trends Anal. Chem. 1997, 16, 200 https://doi.org/10.1016/S0165-9936(97)00021-6
  5. Anvir, D.; Braun, S.; Lev, O.; Ottolenghi, M. Chem. Mater. 1994, 6, 1605 https://doi.org/10.1021/cm00046a008
  6. Avnir, D. Acc. Chem. Res. 1995, 28, 328 https://doi.org/10.1021/ar00056a002
  7. Wang, J. Anal. Chim. Acta 1999, 399, 21 https://doi.org/10.1016/S0003-2670(99)00572-3
  8. Walcarius, A. Chem. Mater. 2001, 13, 3351 https://doi.org/10.1021/cm0110167
  9. Gill, I. Chem. Mater. 2001, 13, 3404 https://doi.org/10.1021/cm0102483
  10. Lee, S.-M.; Lee, W.-Y. Bull. Korean Chem. Soc. 2002, 23, 1169 https://doi.org/10.5012/bkcs.2002.23.8.1169
  11. Topoglidis, E.; Cass, A. E. G.; Gilardi, G.; Sadeghi, S.; Beaumont, N.; Durrant, J. R. Anal. Chem. 1998, 70, 5111 https://doi.org/10.1021/ac980764l
  12. Topoglidis, E.; Cass, A. E. G.; O'Regan, B.; Durrant, J. R. J. Electroanal. Chem. 2001, 517, 20 https://doi.org/10.1016/S0022-0728(01)00673-8
  13. Yu, J.; Ju, H. Anal. Chem. 2002, 74, 3579 https://doi.org/10.1021/ac011290k
  14. Yu, J.; Liu, S.; Ju, H. Biosens. Bioelectron. 2003, 19, 401 https://doi.org/10.1016/S0956-5663(03)00199-4
  15. Liu, Z.; Liu, B.; Zhang, M.; Kong, J.; Deng, J. Anal. Chim. Acta 1999, 392, 135 https://doi.org/10.1016/S0003-2670(99)00247-0
  16. Liu, Z.; Liu, B.; Kong, J.; Deng, J. Anal. Chem. 2000, 72, 4707 https://doi.org/10.1021/ac990490h
  17. Liu, B.; Cao, Y.; Chen, D.; Kong, J.; Deng, J. Anal. Chim. Acta 2003, 478, 59 https://doi.org/10.1016/S0003-2670(02)01480-0
  18. Yang, Y.; Yang, H.; Yang, M.; Liu, Y.; Shen, G.; Yu, R. Anal. Chim. Acta 2004, 525, 213 https://doi.org/10.1016/j.aca.2004.07.071
  19. Zhu, N.; Zhang, A.; Wang, Q.; He, P.; Fang, Y. Anal. Chim. Acta 2004, 510, 163 https://doi.org/10.1016/j.aca.2004.01.017
  20. Dobson, K. D.; McQuilan, A. J. Langmuir 1997, 13, 3392 https://doi.org/10.1021/la962024i
  21. Fang, M.; Kaschak, D. M.; Sutorik, A. C.; Mallouk, T. E. J. Am. Chem. Soc. 1997, 119, 12184 https://doi.org/10.1021/ja972569e
  22. Wang, J.; Pamidi, P. V. A.; Jiang, M. Anal. Chim. Acta 1998, 360, 171 https://doi.org/10.1016/S0003-2670(97)00684-3
  23. Dong, S.; Kuwana, T. J. Electrchem. Soc. 1984, 131, 813 https://doi.org/10.1149/1.2115705
  24. Kim, M.-A.; Lee, W.-Y. Anal. Chim. Acta 2003, 479, 143 https://doi.org/10.1016/S0003-2670(02)01538-6
  25. Choi, H. N.; Kim, M. A.; Lee, W.-Y. Anal. Chim. Acta 2005, 537, 179 https://doi.org/10.1016/j.aca.2005.01.010
  26. Zhang, Z.; Liu, H.; Deng, J. Anal. Chem. 1996, 68, 1632 https://doi.org/10.1021/ac950431d
  27. Wang, J.; Park, D. S.; Pamidi, P. V. A. J. Electroanal. Chem. 1997, 434, 185 https://doi.org/10.1016/S0022-0728(97)00256-8
  28. Chut, S. L.; Li, J.; Tan, S. N. Analyst 1997, 122, 1431 https://doi.org/10.1039/a703383d
  29. Chen, X.; Cheng, G.; Dong, S. Analyst 2001, 126, 1728 https://doi.org/10.1039/b103787k
  30. Lee, W.-Y.; Lee, K. S.; Kim, T.-H.; Shin, M.-C.; Park, J.-K. Electroanalysis 2000, 12, 78 https://doi.org/10.1002/(SICI)1521-4109(20000101)12:1<78::AID-ELAN78>3.0.CO;2-B
  31. Karyakin, A. A.; Karyakina, E. K.; Gorton, L.; Bobrova, O. A.; Lukachova, L. V.; Gladilin, A. K.; Lesashov, A. V. Anal. Chem. 1996, 68, 4335 https://doi.org/10.1021/ac960397i
  32. Wang, B.; Li, B.; Deng, Q.; Dong, S. Anal. Chem. 1998, 70, 3170 https://doi.org/10.1021/ac980160h
  33. Quan, D.; Kim, Y.; Shin, W. J. Electroanal. Chem. 2004, 561, 181 https://doi.org/10.1016/j.jelechem.2003.08.003
  34. Heider, G. H.; Sasso, S. V.; Huang, K.-M.; Yacynych, A. M.; Wieck, H. J. Anal. Chem. 1990, 62, 1106 https://doi.org/10.1021/ac00210a003
  35. Chen, X.; Dong, S. Biosens. Bioelectron. 2003, 18, 999 https://doi.org/10.1016/S0956-5663(02)00221-X
  36. Carr, P. W.; Bowers, L. D. Immobilized Enzymes in Analytical and Clinical Chemistry; Wiley: New York, 1980; pp 26-30
  37. Yamanaka, S. A.; Nishida, F.; Ellerby, L. M.; Nishida, C. R.; Dunn, B.; Valentine, J. S.; Zink, J. I. Chem. Mater. 1992, 4, 495 https://doi.org/10.1021/cm00021a001
  38. Wang, J.; Pamidi, P. V.; Park, D. S. Anal. Chem. 1996, 68, 2705 https://doi.org/10.1021/ac960159n

Cited by

  1. Sol-gel-derived titanium oxide–cerium oxide biocompatible nanocomposite film for urea sensor vol.24, pp.05, 2009, https://doi.org/10.1557/jmr.2009.0212
  2. Nanostructured metal oxide-based biosensors vol.3, pp.1, 2011, https://doi.org/10.1038/asiamat.2010.137
  3. A general route to nanostructured M[V3O8] and Mx[V6O16] (x = 1 and 2) and their first evaluation for building enzymatic biosensors vol.22, pp.30, 2012, https://doi.org/10.1039/c2jm30485f
  4. Chemical and biological sensors based on metal oxide nanostructures vol.48, pp.84, 2012, https://doi.org/10.1039/c2cc34706g
  5. Development of a Novel Reusable Real Time Monitoring Glucose Sensor Based on Nanostructured Conducting Polyaniline (NSPANI) vol.03, pp.01, 2013, https://doi.org/10.4236/ijoc.2013.31010
  6. Mesoporous Zirconia Thin Films with Three-Dimensional Pore Structures and Their Application to Electrochemical Glucose Detection vol.5, pp.9, 2013, https://doi.org/10.1021/am303248p
  7. Nanostructured manganese oxide–chitosan-based cholesterol sensor vol.44, pp.8, 2014, https://doi.org/10.1007/s10800-014-0704-0
  8. Sol–gel synthesis and XPS study of vanadium pentoxide xerogels intercalated with glucose vol.71, pp.3, 2014, https://doi.org/10.1007/s10971-014-3385-6
  9. Nanorod arrays composed of zinc oxide modified with gold nanoparticles and glucose oxidase for enzymatic sensing of glucose vol.182, pp.3-4, 2015, https://doi.org/10.1007/s00604-014-1364-9
  10. Design of metal organic framework–enzyme based bioelectrodes as a novel and highly sensitive biosensing platform vol.3, pp.46, 2015, https://doi.org/10.1039/C5TB01412C
  11. A Comprehensive Review of Glucose Biosensors Based on Nanostructured Metal-Oxides vol.10, pp.5, 2010, https://doi.org/10.3390/s100504855
  12. Tris(2,2′-bipyridyl)ruthenium(II) Electrogenerated Chemiluminescence Sensor Based on Platinized Carbon Nanotube-Zirconia-Nafion Composite Films vol.22, pp.12, 2010, https://doi.org/10.1002/elan.200900586
  13. Highly Sensitive Ethanol Chemical Sensor Based on Novel Ag-Doped Mesoporous α–Fe2O3 Prepared by Modified Sol-Gel Process vol.13, pp.1, 2018, https://doi.org/10.1186/s11671-018-2572-8
  14. A nanostructured cerium oxide film-based immunosensor for mycotoxin detection vol.20, pp.5, 2009, https://doi.org/10.1088/0957-4484/20/5/055105
  15. Zinc oxide-chitosan nanobiocomposite for urea sensor vol.93, pp.16, 2008, https://doi.org/10.1063/1.2980448
  16. Nanoporous cerium oxide thin film for glucose biosensor vol.24, pp.7, 2006, https://doi.org/10.1016/j.bios.2008.10.032
  17. Lipase entrapment in a zirconia matrix: Sol–gel synthesis and catalytic properties vol.59, pp.1, 2006, https://doi.org/10.1016/j.molcatb.2009.01.010
  18. Nanostructured cerium oxide film for triglyceride sensor vol.141, pp.2, 2006, https://doi.org/10.1016/j.snb.2009.05.034
  19. Metal oxide–chitosan based nanocomposite for cholesterol biosensor vol.518, pp.2, 2006, https://doi.org/10.1016/j.tsf.2009.07.036
  20. Nanostructured zirconium oxide based genosensor for Escherichia coli detection vol.11, pp.12, 2009, https://doi.org/10.1016/j.elecom.2009.10.007
  21. Opportunities in nano-structured metal oxides based biosensors vol.358, pp.1, 2006, https://doi.org/10.1088/1742-6596/358/1/012007
  22. Influence of hole mobility on the response characteristics of p-type nickel oxide thin film based glucose biosensor vol.726, pp.None, 2012, https://doi.org/10.1016/j.aca.2012.03.027
  23. Direct electrochemistry of glucose oxidase immobilized on ZrO2 nanoparticles-decorated reduced graphene oxide sheets for a glucose biosensor vol.4, pp.57, 2014, https://doi.org/10.1039/c4ra04350b
  24. DNA mediated electrocatalytic enhancement of α-Fe2O3-PEDOT-C-MoS2hybrid nanostructures for riboflavin detection on screen printed electrode vol.6, pp.85, 2006, https://doi.org/10.1039/c6ra16279g
  25. CHEMICAL COMPOSITION STUDY OF VANADIUM PENTOXIDE XEROGELS DOPED BY BOVINE ALBUMIN vol.23, pp.6, 2006, https://doi.org/10.1142/s0218625x1650058x
  26. Chemistry, Structures, and Advanced Applications of Nanocomposites from Biorenewable Resources vol.120, pp.17, 2020, https://doi.org/10.1021/acs.chemrev.9b00553
  27. Current progress in organic-inorganic hetero-nano-interfaces based electrochemical biosensors for healthcare monitoring vol.452, pp.None, 2006, https://doi.org/10.1016/j.ccr.2021.214282