DOI QR코드

DOI QR Code

Synthesis of β,γ,γ -Tri- or γ,γ -Disubstituted α -Methylene-γ -butyrolactones Starting from the Baylis-Hillman Adducts

  • Lee, Ka-Young (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Park, Da-Yeon (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Kim, Jae-Nyoung (Department of Chemistry and Institute of Basic Science, Chonnam National University)
  • Published : 2006.09.20

Abstract

Keywords

References

  1. Paquette, L. A.; Mendez-Andino, J. Tetrahedron Lett. 1999, 40, 4301 https://doi.org/10.1016/S0040-4039(99)00781-9
  2. Choudhury, P. K.; Foubelo, F.; Yus, M. Tetrahedron Lett. 1998, 39, 3581 https://doi.org/10.1016/S0040-4039(98)00554-1
  3. Loh, T.-P.; Lye, P.-L. Tetrahedron Lett. 2001, 42, 3511 https://doi.org/10.1016/S0040-4039(01)00492-0
  4. Lee, K.-H.; Ibuka, T.; Kim, S.-H.; Vestal, B. R.; Hall, I. H. J. Med. Chem. 1975, 18, 812 https://doi.org/10.1021/jm00242a010
  5. Kabalka, G. W.; Venkataiah, B.; Chen, C. Tetrahedron Lett. 2006, 47, 4187 https://doi.org/10.1016/j.tetlet.2006.04.063
  6. Sidduri, A.-R.; Knochel, P. J. Am. Chem. Soc. 1992, 114, 7579 https://doi.org/10.1021/ja00045a050
  7. Sidduri, A.-R.; Rozema, M. J.; Knochel, P. J. Org. Chem. 1993, 58, 2694 https://doi.org/10.1021/jo00062a010
  8. Peng, H.; Kim, D.-I.; Sarkaria, J. N.; Cho, Y.-S.; Abraham, R. T.; Zalkow, L. H. Bioorg. Med. Chem. 2002, 10, 167 https://doi.org/10.1016/S0968-0896(01)00260-7
  9. Nozaki, K.; Oshima, K.; Utimoto, K. Bull. Chem. Soc. Jpn. 1987, 60, 3465 https://doi.org/10.1246/bcsj.60.3465
  10. Kennedy, J. W. J.; Hall, D. G. J. Am. Chem. Soc. 2002, 124, 898 https://doi.org/10.1021/ja016391e
  11. Kennedy, J. W. J.; Hall, D. G. J. Am. Chem. Soc. 2002, 124, 11586 https://doi.org/10.1021/ja027453j
  12. Kennedy, J. W. J.; Hall, D. G. J. Org. Chem. 2004, 69, 4412 https://doi.org/10.1021/jo049773m
  13. Ghatak, A.; Sarkar, S.; Ghosh, S. Tetrahedron 1997, 53, 17335 https://doi.org/10.1016/S0040-4020(97)10157-0
  14. Sarkar, S.; Ghosh, S. Tetrahedron Lett. 1996, 37, 4809 https://doi.org/10.1016/0040-4039(96)00942-2
  15. Mandal, P. K.; Maiti, G.; Roy, S. C. J. Org. Chem. 1998, 63, 2829 https://doi.org/10.1021/jo971526d
  16. Saicic, R. N.; Zard, S. Z. Chem. Commun. 1996, 1631
  17. Maiti, G.; Roy, S. C. J. Chem. Soc., Perkin Trans. 1 1996, 403
  18. Hon, Y.-S.; Hsieh, C.-H.; Liu, Y.-W. Tetrahedron 2005, 61, 2713 https://doi.org/10.1016/j.tet.2005.01.057
  19. Bella, M.; Margarita, R.; Orlando, C.; Orsini, M.; Parlanti, L.; Piancatelli, G. Tetrahedron Lett. 2000, 41, 561 https://doi.org/10.1016/S0040-4039(99)02119-X
  20. Drioli, S.; Felluga, F.; Forzato, C.; Nitti, P.; Pitacco, G.; Valentin, E. J. Org. Chem. 1998, 63, 2385 https://doi.org/10.1021/jo972032j
  21. Pohmakotr, M.; Harnying, W.; Tuchinda, P.; Reutrakul, V. Helv. Chim. Acta 2002, 85, 3792 https://doi.org/10.1002/1522-2675(200211)85:11<3792::AID-HLCA3792>3.0.CO;2-Q
  22. Biel, M.; Kretsovali, A.; Karatzali, E.; Papamatheakis, J.; Giannis, A. Angew. Chem. Int. Ed. 2004, 43, 3974 https://doi.org/10.1002/anie.200453879
  23. Srikrishna, A. J. Chem. Soc., Chem. Commun. 1987, 587
  24. Isaac, M. B.; Paquette, L. A. J. Org. Chem. 1997, 62, 5333 https://doi.org/10.1021/jo970267p
  25. Paquette, L. A.; Bennett, G. D.; Chhatriwalla, A.; Isaac, M. B. J. Org. Chem. 1997, 62, 3370 https://doi.org/10.1021/jo970158a
  26. Paquette, L. A.; Bennett, G. D.; Isaac, M. B.; Chhatriwalla, A. J. Org. Chem. 1998, 63, 1836 https://doi.org/10.1021/jo9715534
  27. Paquette, L. A.; Rothhaar, R. R.; Isaac, M.; Rogers, L. M.; Rogers, R. D. J. Org. Chem. 1998, 63, 5463 https://doi.org/10.1021/jo980372e
  28. Choudhury, P. K.; Foubelo, F.; Yus, M. J. Org. Chem. 1999, 64, 3376 https://doi.org/10.1021/jo982311m
  29. Kang, S.-K.; Baik, T.-G.; Jiao, X.-H. Synth. Commun. 2002, 32, 75 https://doi.org/10.1081/SCC-120001511
  30. Reddy, G. V.; Rao, G. V.; Iyengar, D. S. Tetrahedron Lett. 1999, 40, 3937 https://doi.org/10.1016/S0040-4039(99)00614-0
  31. Kamal, A.; Reddy, G. S. K.; Reddy, K. L. Tetrahedron Lett. 2001, 42, 6969. 8
  32. Lee, M. J.; Kim, S. C.; Kim, J. N. Bull. Korean Chem. Soc. 2006, 27, 140 https://doi.org/10.5012/bkcs.2006.27.1.140
  33. Lee, K. Y.; Kim, S. C.; Kim, J. N. Bull. Korean Chem. Soc. 2006, 27, 319 https://doi.org/10.5012/bkcs.2006.27.2.319
  34. Lee, K. Y.; Kim, S. C.; Kim, J. N. Tetrahedron Lett. 2006, 47, 977 https://doi.org/10.1016/j.tetlet.2005.11.142
  35. Lee, K. Y.; Seo, J.; Kim, J. N. Tetrahedron Lett. 2006, 47, 3913 https://doi.org/10.1016/j.tetlet.2006.03.167

Cited by

  1. Face selective reduction of the exocyclic double bond in isatin derived spirocyclic lactones vol.11, pp.2, 2013, https://doi.org/10.1039/C2OB27008K
  2. Organoindium Reagents: The Preparation and Application in Organic Synthesis vol.113, pp.1, 2013, https://doi.org/10.1021/cr300051y
  3. An Expedient Synthesis of Cinnamyl Fluorides from Morita-Baylis-Hillman Adducts vol.34, pp.3, 2013, https://doi.org/10.5012/bkcs.2013.34.3.993
  4. An organocatalytic asymmetric sequential allylic alkylation–cyclization of Morita–Baylis–Hillman carbonates and 3-hydroxyoxindoles vol.49, pp.82, 2013, https://doi.org/10.1039/c3cc45139a
  5. ]annulated Arenes and Heteroarenes vol.128, pp.5, 2015, https://doi.org/10.1002/ange.201510457
  6. ]annulated Arenes and Heteroarenes vol.55, pp.5, 2016, https://doi.org/10.1002/anie.201510457
  7. A computational investigation of the solvent-dependent enantioselective intramolecular Morita–Baylis–Hillman reaction of enones vol.15, pp.48, 2017, https://doi.org/10.1039/C7OB02025B
  8. Synthesis of β,γ,γ-Tri- or γ,γ-Disubstituted α-Methylene-γ-butyrolactones Starting from the Baylis—Hillman Adducts. vol.38, pp.7, 2007, https://doi.org/10.1002/chin.200707084
  9. Expeditious Synthesis of 1,3,4-Trisubstituted Pyrazoles from Baylis-Hillman Adducts vol.28, pp.10, 2007, https://doi.org/10.5012/bkcs.2007.28.10.1841
  10. An Expeditious Synthesis of Substituted Pyrrolidines and Tetrahydrofurans Starting from Baylis-Hillman Adducts vol.28, pp.10, 2006, https://doi.org/10.5012/bkcs.2007.28.10.1844
  11. Eschenmoser-Claisen Rearrangement of Baylis-Hillman Adducts vol.28, pp.11, 2007, https://doi.org/10.5012/bkcs.2007.28.11.2093
  12. Facile Synthesis of 3-Benzylidene-5-aryl-3H-furan-2-ones Starting from the Baylis-Hillman Adducts vol.28, pp.5, 2006, https://doi.org/10.5012/bkcs.2007.28.5.719
  13. Regioselective Synthesis of Poly-Substituted Pyrroles from Baylis-Hillman Adducts via the [3+1+N] Annulation Strategy vol.29, pp.11, 2008, https://doi.org/10.5012/bkcs.2008.29.11.2215
  14. Advances in the Baylis-Hillman reaction-assisted synthesis of cyclic frameworks vol.64, pp.20, 2008, https://doi.org/10.1016/j.tet.2008.02.087
  15. Pd-Mediated Cross-Coupling Reactions between the Bromide of Baylis-Hillman Adduct and Organostannanes vol.30, pp.3, 2009, https://doi.org/10.5012/bkcs.2009.30.3.726
  16. Expedient One-Pot Synthesis of γ-hydroxybutenolides Starting from Baylis-Hillman Adducts: Lactonization, Isomerization, and Aerobic Oxidation of α-Methylene-γ-hydroxyester vol.30, pp.5, 2009, https://doi.org/10.5012/bkcs.2009.30.5.1012
  17. An Efficient Synthesis of Functionalized 1,6-Dienes from Baylis-Hillman Adducts via a Pd-Catalyzed Decarboxylative Protonation Protocol vol.31, pp.7, 2006, https://doi.org/10.5012/bkcs.2010.31.7.2057