DOI QR코드

DOI QR Code

Efficient Target Site Selection for an RNA-cleaving DNAzyme through Combinatorial Library Screening

  • Kim, Ki-Sun (Department of Biotechnology and Bioengineering and Department of Biomaterial Control, Dong-Eui University) ;
  • Choi, Woo-Hyung (Department of Biotechnology and Bioengineering and Department of Biomaterial Control, Dong-Eui University) ;
  • Gong, Soo-Jeong (Department of Biotechnology and Bioengineering and Department of Biomaterial Control, Dong-Eui University) ;
  • Oh, Sang-taek (PharmcoGenomics Research Center, Inje University) ;
  • Kim, Jae-Hyun (Nambu Blood Laboratory, Korean Red Cross) ;
  • Kim, Dong-Eun (Department of Biotechnology and Bioengineering and Department of Biomaterial Control, Dong-Eui University)
  • Published : 2006.05.20

Abstract

Identification of accessible sites in targeted RNAs is a major limitation to the effectiveness of antisense oligonucleotides. A class of antisense oligodeoxynucleotides, known as the “10-23” DNA enzyme or DNAzyme, which is a small catalytic DNA, has been shown to efficiently cleave target RNA at purine-pyrimidine junctions in vitro. We have designed a strategy to identify accessible cleavage sites in the target RNA, which is hepatitis C virus nonstructural gene 3 (HCV NS3) RNA that encodes viral helicase and protease, from a pool of random DNAzyme library. A pool of DNAzymes of 58 nucleotides-length that possess randomized annealing arms, catalytic core sequence, and fixed 5'/3'-end flanking sequences was designed and screened for their ability to cleave the target RNA. The screening procedure, which includes binding of DNAzyme pool to the target RNA under inactive condition, selection and amplification of active DNAzymes, incubation of the selected DNAzymes with the target RNA, and target site identification on sequencing gels, identified 16 potential cleavage sites in the target RNA. Corresponding DNAzymes were constructed for the selected target sites and were tested for RNA-cleavage in terms of kinetics and accessibility. These selected DNAzymes were effective in cleaving the target RNA in the presence of $Mg^{2+}$. This strategy can be applicable to identify accessible sites in any target RNA for antisense oligonucleotides-based gene inactivation methods.

Keywords

References

  1. Santoro, S. W.; Joyce, G. F. Proc. Natl. Acad. Sci. USA 1997, 94, 4262
  2. Santiago, F. S.; Lowe, H. C.; Kavurma, M. M.; Chesterman, C.N.; Baker, A.; Atkins, D. G.; Khachigian, L. M. Nature Med. 1999, 11, 1264
  3. Wu, Y.; Yu, L.; McMahon, R.; Rossi, J. J.; Forman, S. J.; Snyder,D. S. Human Gene Ther. 1999, 10, 2847 https://doi.org/10.1089/10430349950016573
  4. Zhang, X.; Xu, Y.; Ling, H.; Hattori, T. FEBS Lett. 1999, 458, 151 https://doi.org/10.1016/S0014-5793(99)01149-7
  5. Sun, L. Q.; Cairns, M. J.; Saravolac, E. G.; Baker, A.; Gerlach, W.L. Pharmacol Rev. 2000, 52, 325
  6. Ho, S. P.; Britton, D. H.; Stone, B. A.; Behrens, D. L.; Leffet, L.M.; Hobbs, F. W. et al.Nucleic Acids Res. 1996, 24, 1901 https://doi.org/10.1093/nar/24.10.1901
  7. Matveeva, O.; Felden, B.; Audlin, S.; Gesteland, R. F.; Atkins, J.F. Nucleic Acids Res. 1997, 25, 5010 https://doi.org/10.1093/nar/25.24.5010
  8. Birikh, K. R.; Berlin, Y. A.; Soreq, H.; Eckstein, F. RNA 1997, 3,429
  9. Lima, W. F.; Brown-Driver, V.; Fox, M.; Hanecak, R.; Bruice, T.W. J. Biol. Chem. 1997, 272, 626 https://doi.org/10.1074/jbc.272.1.626
  10. Ho, S. P.; Bao, Y.; Lesher, T.; Malhotra, R.; Ma, L. Y.; Fluharty, S.J. et al. Nature Biotechnol. 1998, 16, 59
  11. Bramlage, B.; Luzi, E.; Eckstein, F. Nucleic Acids Res. 2000, 28, 4059 https://doi.org/10.1093/nar/28.21.4059
  12. Yu, Q.; Pecchia, D. B.; Kingsley, S. L.; Heckman, J. E.; Burke, J.M. J. Biol. Chem. 1998, 273, 23, 524 https://doi.org/10.1074/jbc.273.1.524
  13. Campbell, T. B.; Cech, T. R. RNA 1995, 1, 598
  14. Cairns, M. J.; Hopkins, T. M.; Witherington, C.; Wang, L.; Sun,L.-G. Nature Biotechnology 1999, 17, 480 https://doi.org/10.1038/8658
  15. Sambrook, J.; Fritsch, E. F.; Maniatis, T.Molecular Cloning, 2nd ed.; Cold Spring Harbor Press: 1989
  16. Lima, W. F.; Monia, B. P.; Ecker, D. J.; Freier, S. M. Biochemistry 1992, 31, 12055 https://doi.org/10.1021/bi00163a013
  17. Zuker, M.; Jacobson, A. RNA 1998, 4, 669 https://doi.org/10.1017/S1355838298980116
  18. Cho, B.; Lee, H.Bull. Korean Chem. Soc. 2005, 26, 2033 https://doi.org/10.5012/bkcs.2005.26.12.2033

Cited by

  1. Targeting Insulin-like Growth Factor I with 10–23 DNAzymes: 2′-O-Methyl Modifications in the Catalytic Core Enhance mRNA Cleavage vol.51, pp.11, 2012, https://doi.org/10.1021/bi201532q
  2. Conformational Dynamics of Self-thiophosphorylating RNA vol.28, pp.3, 2007, https://doi.org/10.5012/bkcs.2007.28.3.463
  3. Proximity of Both Ends of Stems P3 and P4 of Self-kinasing RNA by ATP vol.28, pp.4, 2006, https://doi.org/10.5012/bkcs.2007.28.4.689
  4. Oligodeoxyribozymes That Cleave β-Catenin Messenger RNA Inhibit Growth of Colon Cancer Cells via Reduction of β-Catenin Response Transcription vol.9, pp.6, 2010, https://doi.org/10.1158/1535-7163.mct-10-0056