DOI QR코드

DOI QR Code

Selective Vapor-Phase Deposition of Conductive Poly(3,4-ethylenedioxythiophene) Thin Films on Patterned FeCl3 Formed by Microcontact Printing

  • Lee, Bo H. (Department of Chemistry, Hanyang University) ;
  • Cho, Yeon H. (Department of Chemistry, Hanyang University) ;
  • Shin, Hyun-Jung (School of Advanced Materials Engineering, Kookmin University) ;
  • Kim, Jin-Yeol (School of Advanced Materials Engineering, Kookmin University) ;
  • Lee, Jae-gab (School of Advanced Materials Engineering, Kookmin University) ;
  • Lee, Hai-won (Department of Chemistry, Hanyang University) ;
  • Sung, Myung M. (Department of Chemistry, Hanyang University)
  • Published : 2006.10.20

Abstract

We demonstrate a selective vapor-phase deposition of conductive poly(3,4-ethylenedioxythiophene) (PEDOT) thin films on patterned $FeCl_3$. The PEDOT thin films were grown on various substrates by using the vapor-phase polymerization of ethylenedioxythiophene (EDOT) with $FeCl_3$ catalytic layers at 325 K. The selective deposition of the PEDOT thin films using vapor-phase polymerization was accomplished with patterned $FeCl_3$ layers as templates. Microcontact printing was done to prepare patterned $FeCl_3$ on polyethyleneterephthalate (PET) substrates. The selective vapor-phase deposition is based on the fact that the PEDOT thin films are selectively deposited only on the regions exposing $FeCl_3$ of the PET substrates, because the EDOT monomer can be polymerized only in the presence of oxidants, such as $FeCl_3$, Fe($CIO_4$), and iron(II) salts of organic acids/inorganic acids containing organic radicals.

Keywords

References

  1. Nalwa, H. S. Handbook of Conductive Molecules and Polymers; John Wiley & Sons: New York, NY, 1997
  2. Yoneyama, H.; Wakamoto, K.; Tamura, H. J. Electrochem. Soc. 1985, 132, 2414 https://doi.org/10.1149/1.2113587
  3. Kaneto, K.; Maxfield, M.; Nairns, A. G.; MacDiarmid, A. G.; Heeger, A. J. J. Chem. Soc. Faraday Trans. 1982, 78, 3417 https://doi.org/10.1039/f19827803417
  4. Roncali, J. Chem. Rev. 1992, 92, 711 https://doi.org/10.1021/cr00012a009
  5. Gustafsson, G.; Gao, Y.; Tracy, G. M.; Klavetter, F.; Colaneri, N.; Heeger, A. J. Nature 1993, 357, 477 https://doi.org/10.1038/357477a0
  6. Gao, Y.; Heeger, A. J.; Lee, J. Y.; Kim, C. Synth. Met. 1996, 82, 221 https://doi.org/10.1016/S0379-6779(96)03794-0
  7. Gao, Y.; Yu, G.; Zhang, C.; Menon, R.; Heeger, A. J.; Lee, J. Y.; Kim, C. Y. Synth. Met. 1997, 87, 171 https://doi.org/10.1016/S0379-6779(97)03823-X
  8. Scott, J. C.; Carter, S. A.; Karg, S.; Angelopoulos, M. Synth. Met. 1997, 85, 1197 https://doi.org/10.1016/S0379-6779(97)80207-X
  9. Cheing, D. M.; Bloor, D.; Stevens, G. L. Polymer 1988, 29, 1709 https://doi.org/10.1016/0032-3861(88)90288-1
  10. Diaz, A. F.; Rubinson, J. F.; Mark, H. B. Adv. Polym. Sci. 1988, 84, 113 https://doi.org/10.1007/BFb0025905
  11. Keneko, M.; Wohrle, D. Adv. Polym. Sci. 1988, 84, 141 https://doi.org/10.1007/BFb0025906
  12. Khedkar, S. P.; Radhakrishnan, S. Thin Solid Films 1997, 303, 167 https://doi.org/10.1016/S0040-6090(97)00133-8
  13. Kim, J.; Kim, E.; Won, Y.; Lee, H.; Suh, K. Synth. Met. 2003, 139, 485 https://doi.org/10.1016/S0379-6779(03)00202-9
  14. Kwon, S.; Han, S.; Ihm, D.; Kim, E.; Kim, J. Mol. Cryst. Liq. Cryst. 2004, 425, 77 https://doi.org/10.1080/15421400490506531
  15. Jager, E. W. H.; Smela, E.; Inganas, O. Science 2000, 290, 1540 https://doi.org/10.1126/science.290.5496.1540
  16. Marck, C.; Borgwarth, K.; Heinze, J. Chem. Mater. 2001, 13, 747 https://doi.org/10.1021/cm001062r
  17. Martin, C. R. Chem. Mater. 1996, 8, 1739 https://doi.org/10.1021/cm960166s
  18. He, H. X.; Li, C. Z.; Tao, N. J. Appl. Phys. Lett. 2004, 84, 828 https://doi.org/10.1063/1.1645323
  19. Maynor, B. W.; Liu, J. J. Am. Chem. Soc. 2002, 124, 522 https://doi.org/10.1021/ja017365j
  20. Yu, J. F.; Holdcroft, S. Chem. Commun. 2001, 1274
  21. Holdcroft, S. Adv. Mater. 2001, 13, 1753 https://doi.org/10.1002/1521-4095(200112)13:23<1753::AID-ADMA1753>3.0.CO;2-2
  22. Seo, I.; Phyo, M. H.; Cho, G. Langmuir 2002, 18, 7253 https://doi.org/10.1021/la025685q
  23. Cho, G.; Seo, I.; Jung, S.; Oh, E.; Fung, B. M. Langmuir 2003, 19, 6576 https://doi.org/10.1021/la034756y
  24. Xia, Y.; Rogers, J. A.; Paul, K. E.; Whitesides, G. M. Chem. Rev. 1999, 99, 1823 https://doi.org/10.1021/cr980002q
  25. Xia, Y.; Whitesides, G. M. Angew. Chem. Int. Ed. 1998, 37, 550 https://doi.org/10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G
  26. Kumar, A.; Biebuyck, H. A.; Abbott, N. L.; Whitesides, G. M. J. Am. Chem. Soc. 1992, 114, 9188 https://doi.org/10.1021/ja00049a061
  27. Kumar, A.; Whitesides, G. M. Appl. Phys. Lett. 1993, 63, 2002 https://doi.org/10.1063/1.110628
  28. Kumar, A.; Biebuyck, H. A.; Whitesides, G. M. Langmuir 1994, 10, 1498 https://doi.org/10.1021/la00017a030
  29. Xia, Y.; Zhao, X.; Whitesides, G. M. Microelectronic Engineering 1996, 32, 255 https://doi.org/10.1016/0167-9317(95)00174-3
  30. Masuda, Y.; Jinbo, Y.; Yonezawa, T.; Koumoto, K. Chem. Mater. 2002, 14, 1236 https://doi.org/10.1021/cm0107528
  31. Hidber, P. C.; Helbig, W.; Kim, E.; Whitesides, G. M. Langmuir 1996, 12, 1375 https://doi.org/10.1021/la9507500
  32. Hidber, P. C.; Nealey, P. F.; Helbig, W.; Whitesides, G. M. Langmuir 1996, 12, 5209 https://doi.org/10.1021/la960238u
  33. Xia, Y.; Zhao, X.; Whitesides, G. M. Microelectronic Engineering 1996, 32, 255 https://doi.org/10.1016/0167-9317(95)00174-3
  34. Masuda, Y.; Jinbo, Y.; Yonezawa, T.; Koumoto, K. Chem. Mater. 2002, 14, 1236 https://doi.org/10.1021/cm0107528
  35. Sung, M. M.; Kim, Y. Bull. Korean Chem. Soc. 1993, 14, 163
  36. Sung, M. M.; Kim, Y. Bull. Korean Chem. Soc. 2001, 22, 748
  37. Carver, J. C.; Schweitzer, G. K.; Carlson, T. A. J. Chem. Phys. 1972, 57, 973 https://doi.org/10.1063/1.1678348
  38. Tan, K. L.; Tan, B. T.; Kang, E. T.; Neoh, K. G.; Ong, Y. K. Physical Reviw B 1990, 42, 7563 https://doi.org/10.1103/PhysRevB.42.7563
  39. Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy; Physical Electronics, Inc.: Eden Prairie, Minnesota, 1995

Cited by

  1. Fabrication of Highly Conductive Poly(3,4-ethylenedioxythiophene) Films by Vapor Phase Polymerization and Their Application in Efficient Organic Light-Emitting Diodes vol.19, pp.17, 2007, https://doi.org/10.1002/adma.200700614
  2. Synthesis and Properties of Soluble and Stable Silyl End-capped Bis-thienylanthracene Oligomers vol.28, pp.11, 2006, https://doi.org/10.5012/bkcs.2007.28.11.1931
  3. Synthesis and Properties of Hexyl End-Capped Thiophene Oligomers Containing Anthracene Moiety in the Center vol.28, pp.7, 2006, https://doi.org/10.5012/bkcs.2007.28.7.1175
  4. Di- and tri-aminosilane SAM-assisted patterning of highly pure poly(3,4-ethylenedioxythiophene) nanofilms robustly adhered to silicon oxide substrate vol.201, pp.22, 2006, https://doi.org/10.1016/j.surfcoat.2007.04.060
  5. Micrometer and nanometer-scale parallel patterning of ceramic and organic–inorganic hybrid materials vol.30, pp.7, 2006, https://doi.org/10.1016/j.jeurceramsoc.2010.01.016
  6. Inkjet printing and vapor phase polymerization: patterned conductive PEDOT for electronic applications vol.1, pp.20, 2013, https://doi.org/10.1039/c3tc30356j