DOI QR코드

DOI QR Code

Conformations, Chemical Reactivities and Spectroscopic Characteristics of Some Di-substituted Ketenes: An ab initio Study

  • Gupta, V.P. (Department of Physics, University of Jammu) ;
  • Sharma, Archna (Department of Physics, University of Jammu) ;
  • Agrawal, S.G. (Regional Research Laboratory)
  • Published : 2006.09.20

Abstract

A systematic study of the structure, energetics and spectral characteristics of substituted aminoketenes $R(NH_2)$C=C=O (R = H, $CH_3$, $NH_2$, OH, $OCH_3$, CH=$CH_2$, C$\equiv$CH, CN, CHO, NO, $NO_2$) which are highly reactive and transient intermediates in synthesis has been conducted by ab initio calculations at the MP2/6- 31G*//MP2/6-31G* level. Twenty four stable isomers of the eleven substituted aminoketenes having dihedral angles $\phi NH_2\sim120{^{\circ}}$ and $60^{\circ}$ have been identified and their optimized geometries and energies obtained. Electrostatic and steric effects on the molecular geometries have been analyzed. While the $\pi$-acceptor groups lead to planar conformations, the electron-donor groups give rise to non-planar conformations. Isodesmic substituent stabilization energies relative to alkenes have been calculated and correlation with group electronegativities established. Role of induction effect by the substituent groups and resonance effects in charge distribution in the molecules has been analyzed. An analysis of the asymmetric stretching frequencies and intensities of the C=C=O group shows that affect of non-$\pi$ acceptor substituents on the frequency is determined by the field effect (F) and resonance effect (R) parameters, the calculated intensities I (km/mol.) are correlated to group electronegativities $x$ of the substituents by the relationship I = 640.2–100.1 $x$ (r = 0.92). The $\pi$-acceptor substituents increase the intensity which may be explained in terms of their delocalizing effect on the negative charge at the $C_{\beta}$ atom.

Keywords

References

  1. Pietri, N.; Chivassa, T.; Allouche, A.; Rajzmann, M.; Aycard, J.-P. J. Phys. Chem. 1996, 100, 7034 https://doi.org/10.1021/jp952718k
  2. Leung-Toung, R.; Wentrup, C. J. J. Org. Chem. 1992, 57, 4850 https://doi.org/10.1021/jo00044a019
  3. Freiermuth, B.; Wentrup, C. J. J. Org. Chem. 1991, 56, 2286 https://doi.org/10.1021/jo00007a008
  4. Kappe, C. O.; Wong, M. W.; Wentrup, C. J. J. Org. Chem. 1995, 60, 1686 https://doi.org/10.1021/jo00111a029
  5. Bibas, H.; Wong, M. W.; Wentrup, C. J. J. Am. Chem. Soc. 1995, 117, 9582 https://doi.org/10.1021/ja00142a034
  6. Fabian, W. M. F.; Kollenz, G. J. Mol. Struct. (Theochem) 1994, 313, 219 https://doi.org/10.1016/0166-1280(94)85004-6
  7. McAllister, M. A.; Tidwell, T. T. Canadian J. Chem. 1994, 72, 882 https://doi.org/10.1139/v94-115
  8. Runge, W. Prog. Phys. Org. Chem. 1981, 13, 315 https://doi.org/10.1002/9780470171929.ch5
  9. Brown, R. D.; Godfrey, P. D.; Woodruff, M. Aust. J. Chem. 1979, 32, 2103 https://doi.org/10.1071/CH9792103c
  10. McAllister, M. A.; Tidwell, T. T. J. Org. Chem. 1994, 59, 4506 https://doi.org/10.1021/jo00095a028
  11. Gong, L.; McAllister, M. A.; Tidwell, T. J. Am. Chem. Soc. 1991, 113, 6021 https://doi.org/10.1021/ja00016a014
  12. Birney, D. M. J. Org. Chem. 1994, 59, 2557 https://doi.org/10.1021/jo00088a043
  13. Leszczynski, J.; Kwiatkowski, J. S. Chem. Phys. Lett. 1993, 201, 79 https://doi.org/10.1016/0009-2614(93)85037-O
  14. Nguyen, M. T.; Ha, T.; More O'Ferral, R. A. J. Org. Chem. 1990, 55, 3251 https://doi.org/10.1021/jo00297a049
  15. Allen, A. D.; Gong, L.; Tidwell, T. T. J. Am. Chem. Soc. 1990, 112, 6396 https://doi.org/10.1021/ja00173a037
  16. Badawi, H. M.; Forner, W.; Al-Saadi, A. J. Mol. Struct. (THEOCHEM) 2000, 561, 103
  17. Badawi, H. M.; Al-Saadi, A.; Forner, W. Spectrochim. Acta 2002, 58A, 33
  18. Badawi, H. M.; Forner, W.; Al-Saadi, A. J. Mol. Struct. (THEOCHEM) 2000, 505, 19 https://doi.org/10.1016/S0166-1280(99)00331-0
  19. Boyd, R. J.; Boyd, S. L. J. Am. Chem. Soc. 1992, 114, 1652 https://doi.org/10.1021/ja00031a018
  20. McAllister, M. A.; Tidwell, T. D. Can. J. Chem. 1994, 72, 882 https://doi.org/10.1139/v94-115
  21. Gano, J. E.; Jacob, E. J. Spectrochim Acta 1987, 43A, 1023
  22. Swain, C. G.; Lupton, E. C. J. Am. Chem. Soc. 1968, 90, 4326
  23. Swain, G. C.; Unger, S. H.; Rosenquist, N. R.; Swain, M. S. J. Am. Chem. Soc. 1983, 105, 492 https://doi.org/10.1021/ja00341a032
  24. Hegedus, L. S.; Imwinkelreid, R.; Alarid-Sargent, M.; Dvorak, D.; Satoh, Y. J. Am. Chem. Soc. 1990, 112,1109 https://doi.org/10.1021/ja00159a034
  25. Computer Program Gaussian 98W; Gaussian Inc.: Pittsburg, P.A., 2001
  26. Schleyer, P. V. R. Pure Appl. Chem. 1987, 59, 1647 https://doi.org/10.1351/pac198759121647
  27. Brady, W. T.; Dad, M. M. J. Org. Chem. 1991, 56, 6118 https://doi.org/10.1021/jo00021a029
  28. Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165 https://doi.org/10.1021/cr00002a004
  29. Dixon, D. A.; Eades, R. A.; Frey, R.; Gassman, P. G.; Hendewerk, M. L.; Paddon-Row, M. N.; Houk, K. N. J. Am. Chem. Soc. 1984, 106, 3885 https://doi.org/10.1021/ja00326a001
  30. Hehre, W. J.; Radom, L.; Schleyer, P. V. R.; Pople, J. A. Ab initio Molecular Orbital Theory; Wiley-Interscience: New-York, 1986
  31. Brown, R. D.; Godfrey, P. D.; Woodruff, M. Aust. J. Chem. 1979, 32, 2103 https://doi.org/10.1071/CH9792103c
  32. Deady, W.; Harrison, P. M.; Topsom, R. D. Spectrochim. Acta 1975, 31A, 1671
  33. Katritzky, A. R.; Topsom, R. D. Linear Free Energy Relationships and Optical Spectroscopy in Advances in Linear Free Energy Relationships; Chapman, N. B., Shorter, J., Eds.; Plenum Press: London, 1972

Cited by

  1. Stable and Persistent Acyclic Diaminocarbenes with Cycloalkyl Substituents and Their Transformation to β-Lactams by Uncatalysed Carbonylation with CO vol.25, pp.6, 2018, https://doi.org/10.1002/chem.201805307
  2. The reaction of a particularly electrophilic acyclic diaminocarbene with carbon monoxide: formation of β- and γ-lactams vol.74, pp.2, 2019, https://doi.org/10.1515/znb-2018-0255
  3. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  4. Structural and spectroscopic studies on 2-pyranones vol.75, pp.1, 2006, https://doi.org/10.1016/j.saa.2009.10.020
  5. Unmasking the elusive 1,4-diazabutatrienes: the stabilizing role of the N-substituents vol.23, pp.10, 2006, https://doi.org/10.1039/d1cp00274k