DOI QR코드

DOI QR Code

Potency of Several Structurally Different Acetylcholinesterase Reactivators to Reactivate House Fly and Bovine Acetylcholinesterases Inhibited by Paraoxon and DFP

  • Park, No-Jung (Bioorganic Science Division, Korea Research Institute of Chemical Technology) ;
  • Jung, Young-Sik (Bioorganic Science Division, Korea Research Institute of Chemical Technology) ;
  • Musilek, Kamil (Department of Toxicology, Faculty of Military Health Sciences) ;
  • Jun, Daniel (Department of Toxicology, Faculty of Military Health Sciences) ;
  • Kuca, Kamil (Department of Toxicology, Faculty of Military Health Sciences)
  • Published : 2006.09.20

Abstract

Eight structurally different acetylcholinesterase reactivators derived from currently commercially available oximes were tested for their potency to reactivate acetylcholinesterase inhibited by pesticide paraoxon (P) and DFP (D). Housefly AChE (F) and bovine red blood cell AChE (B) were used as the source of the cholinesterases. Ellman's method was taken to examine cholinesterases activity. The results show that four AChE reactivators are potent AChE reactivators, able to reach reactivation potency of more than 30% in all cases - PF, PB, DF and DB. Their reactivation potency was comparable with that of pralidoxime and even higher compared with that of HI-6, standard AChE reactivators currently available on the market.

Keywords

References

  1. Bajgar, J. Adv. Clin. Chem. 2004, 38, 151-216 https://doi.org/10.1016/S0065-2423(04)38006-6
  2. Patocka, J.; Kuca, K.; Jun, D. Acta Medica (Hradec Kralove) 2004, 47, 215-230
  3. Marrs, T. C. Pharmacol. Ther. 1993, 58, 51-66 https://doi.org/10.1016/0163-7258(93)90066-M
  4. Kassa, J. J. Toxicol. Clin. Toxicol. 2002, 40, 803-816 https://doi.org/10.1081/CLT-120015840
  5. Chennamaneni, S. R.; Vobalaboina, V.; Garlapati, A. Bioorg. Med. Chem. Lett. 2005, 15, 3076-3080 https://doi.org/10.1016/j.bmcl.2005.04.026
  6. Musilek, K.; Kuca, K.; Jun, D.; Dohnal, V.; Dolezal, M. J. Enz. Inhib. Med. Chem. 2005, 20, 409-415 https://doi.org/10.1080/14756360500179762
  7. Musilek, K.; Kuca, K.; Jun, D.; Dohnal, V.; Dolezal, M. Biorg. Med. Chem. Lett. 2006, 16, 622-627 https://doi.org/10.1016/j.bmcl.2005.10.059
  8. Picha, J.; Kuca, K.; Kivala, M.; Kohout, M.; Cabal, J.; Liska, F. J. Enz. Inhib. Med. Chem. 2005, 20, 233-237 https://doi.org/10.1080/14756360400021858
  9. Yang, G. Y.; Yoon, J. H.; Seong, C. M.; Park, N. S.; Jung, Y. S. Bull. Korean Chem. Soc. 2003, 24, 1368-1370 https://doi.org/10.5012/bkcs.2003.24.9.1368
  10. Kim, T. H.; Kuca, K.; Jun, D.; Jung, Y. S. Bioorg. Med. Chem. Lett. 2005, 15, 2914-2917 https://doi.org/10.1016/j.bmcl.2005.03.060
  11. Kuca, K.; Jun, D.; Kim, T. H.; Cabal, J.; Jung, Y. S. Bull. Korean Chem. Soc. 2006, 27, 395-398 https://doi.org/10.5012/bkcs.2006.27.3.395
  12. Calic, M.; Lucic Vrdoljak, A.; Radic, B.; Jelic, D.; Jun, D.; Kuca, K.; Kovarik, Z. Toxicology 2006, 219, 85-96 https://doi.org/10.1016/j.tox.2005.11.003
  13. Worek, F.; Kirchner, T.; Backer, M.; Szinicz, L. Arch. Toxicol. 1996, 70, 497- 503 https://doi.org/10.1007/s002040050304
  14. Petroianu, G. A.; Hasan, M. Y.; Nurulain, S. M.; Arafat, K.; Shafiullah, M.; Naseer, O. J. Appl. Toxicol. 2005, 25, 68-73 https://doi.org/10.1002/jat.1037
  15. Kuca, K.; Patocka, J.; Cabal, J.; Jun, J. Neurotox. Res. 2004, 6, 565-570 https://doi.org/10.1007/BF03033452
  16. Sevelova, L.; Kuca, K.; Krejcova, G. Toxicology 2005, 207, 1-6 https://doi.org/10.1016/j.tox.2004.07.019
  17. Hamilton, M. G.; Lundy, P. M. Arch. Toxicol. 1989, 63, 144-149 https://doi.org/10.1007/BF00316437
  18. Harris, L. W.; Heyl, W. C.; Stitcher, D. L.; Broomfield, C. A. Biochem. Pharmacol. 1978, 27, 757-761 https://doi.org/10.1016/0006-2952(78)90516-6
  19. Stalc, A.; Sentjurc, M. Biochem. Pharmacol. 1990, 40, 2511-2517 https://doi.org/10.1016/0006-2952(90)90093-Z
  20. Alkondon, M.; Albuquerque, E. X. J. Pharmacol. Exp. Ther. 1989, 250, 842-852
  21. Alkondon, M.; Rao, K. S.; Albuquerque, E. X. J. Pharmacal. Exp. Ther. 1988, 245, 543-556
  22. Tattersall, J. E. H. Br. J. Pharmacol. 1993, 108, 106-115 https://doi.org/10.1111/j.1476-5381.1993.tb13447.x
  23. Yu, K. H.; Park, J. H.; Yang, S. D. Bull. Korean Chem. Soc. 2004, 25, 506-510. 12 https://doi.org/10.5012/bkcs.2004.25.4.506
  24. Kuca, K.; Bielavsky, J.; Cabal, J.; Bielavska, M. Tetrahedron Lett. 2003, 44, 3123-3125 https://doi.org/10.1016/S0040-4039(03)00538-0
  25. Kuca, K.; Bielavsky, J.; Cabal, J.; Kassa, J. Bioorg. Med. Chem. Lett. 2003, 13, 3545-3547 https://doi.org/10.1016/S0960-894X(03)00751-0
  26. Kuca, K.; Cabal, J.; Patocka, J.; Kassa, J. Lett. Org. Chem. 2004, 1, 84-86 https://doi.org/10.2174/1570178043488761
  27. Kuca, K.; Dohnal, V. Acta Medica (Hradec Kralove) 2004, 47, 167-169
  28. Kuca, K.; Kassa, J. J. Enz. Inhib. Med. Chem. 2003, 18, 529-535 https://doi.org/10.1080/14756360310001605552
  29. Kuca, K.; Kassa, J. Vet. Hum. Toxicol. 2004, 46, 15-18
  30. Luo, C.; Ashani, Y.; Doctor, B. P. Mol. Pharmacol. 1998, 53, 718-726 https://doi.org/10.1124/mol.53.4.718
  31. Park, N. J.; Kamble, S. T. J. Econ. Entomol. 2001, 94, 499- 505 https://doi.org/10.1603/0022-0493-94.2.499
  32. Ellman, G. L.; Courtney, K. D.; Andres, Jr, V.; Featherstone, B. C. Biochem. Pharmacol. 1961, 7, 88-95 https://doi.org/10.1016/0006-2952(61)90145-9
  33. Eddleston, M.; Eyer, P.; Worek, F.; Mohamed, F.; Senarathna, L.; von Meyer, L.; Juszczak, E.; Hittarage, A.; Azhar, S.; Dissanayake, W.; Sheriff, M. H. R.; Szinicz, L.; Dawson, A. H.; Buckley, N. A. Lancet 2005, 366, 1452-1459 https://doi.org/10.1016/S0140-6736(05)67598-8
  34. Thiermann, H.; Mast, U.; Klimmek, R.; Eyer, P.; Hibler, A.; Pfab, R.; Felgenhauer, N.; Zilker, T. Hum. Exp. Toxicol. 1997, 16, 473-480 https://doi.org/10.1177/096032719701600809
  35. Worek, F.; Diepold, C.; Eyer, P. Arch. Toxicol. 1999, 73, 7-14 https://doi.org/10.1007/s002040050580
  36. Balali-Mood, M.; Shariat, M. J. Physiology (Paris) 1998, 92, 375-378 https://doi.org/10.1016/S0928-4257(99)80008-4
  37. Jun, D.; Kuca, K.; Hronek, M.; Opletal, L. J. Appl. Toxicol. 2006, 26, 262-268 https://doi.org/10.1002/jat.1143
  38. Kuca, K.; Jun, D.; Musilek, K. Mini Rev. Med. Chem. 2006, 6, 269-277 https://doi.org/10.2174/138955706776073510
  39. Schwarz, M.; Loewenstein-Lichtenstein, Y.; Glick, D.; Liao, J.; Norgaard-Petersen, B.; Soreq, H. Molecul. Brain Res. 1995, 31, 101-110 https://doi.org/10.1016/0169-328X(95)00040-Y

Cited by

  1. Targeted Synthesis of 1-(4-Hydroxyiminomethylpyridinium)-3-pyridiniumpropane Dibromide – A New Nerve Agent Reactivator vol.12, pp.8, 2007, https://doi.org/10.3390/12081964
  2. Oxime K027: novel low-toxic candidate for the universal reactivator of nerve agent- and pesticide-inhibited acetylcholinesterase vol.25, pp.4, 2010, https://doi.org/10.3109/14756360903357569
  3. Evaluation of Cholinesterase Activity, Oxidative Stress Markers, Cyto- and Genotoxicity of K048 Oxime - a Promising Antidote against Organophosphate Poisoning vol.114, pp.4, 2013, https://doi.org/10.1111/bcpt.12158
  4. Monooxime-monocarbamoyl Bispyridinium Xylene-Linked Reactivators of Acetylcholinesterase-Synthesis, In vitro and Toxicity Evaluation, and Docking Studies vol.5, pp.2, 2010, https://doi.org/10.1002/cmdc.200900455
  5. Development of an Acetylcholinesterase-Based Detection Kit for the Determination of Organophosphorus and Carbamate Pesticide Residues in Agricultural Samples vol.28, pp.6, 2006, https://doi.org/10.5012/bkcs.2007.28.6.929
  6. Potency of Novel Oximes to Reactivate Sarin Inhibited Human Cholinesterases vol.31, pp.1, 2006, https://doi.org/10.1080/01480540701688238
  7. In vitro Screening of Oxime Reactivators on the Model of Paraoxon-inhibited Acetylcholinesterase-SAR Study vol.31, pp.6, 2010, https://doi.org/10.5012/bkcs.2010.31.6.1609