DOI QR코드

DOI QR Code

Rh2(Opiv)4-Catalyzed Reactions of Diazo Compound Derived from Meldrum's Acid and Styrenes. Efficient Synthesis of Cyclopropanes

  • Lee, Yong-Rok (School of Chemical Engineering and Technology, College of Engineering, Yeungnam University) ;
  • Choi, Jung-Hyun (School of Chemical Engineering and Technology, College of Engineering, Yeungnam University)
  • Published : 2006.04.20

Abstract

The rhodium(II)-catalyzed reactions of diazo compound derived from Meldrum's acid with a variety of styrenes have been examined. These reactions provide a rapid route to the preparation of cyclopropanes with a variety of substituents on the benzene ring. The mechanistic pathway for the formation of these products has been also described in terms of a stepwise mechanism.

Keywords

References

  1. Faust, R. Angew. Chem., Int. Ed. 2001, 40, 2251 https://doi.org/10.1002/1521-3773(20010618)40:12<2251::AID-ANIE2251>3.0.CO;2-R
  2. Salaun, J. Top. Curr. Chem. 2000, 207, 1 https://doi.org/10.1007/3-540-48255-5_1
  3. Djerassi, C.; Doss, G. A. New. J. Chem. 1990, 14, 713
  4. Srikrishna, A.; Krishnan, K. Tetrahedron 1992, 48, 3429 https://doi.org/10.1016/0040-4020(92)85016-8
  5. Yadav, J. S.; Mysorekar, S. V.; Rao, A. V. R. Tetrahedron 1989, 45, 7353 https://doi.org/10.1016/S0040-4020(01)89196-1
  6. Leeper, F. J.; Padmanabhan, P.; Kirby, G. W.; Sheldrake, G. N. J. Chem. Soc., Chem. Commun. 1987, 505
  7. Piers, E. In Comprehensive Organic Synthesis; Trost, B. M., Ed.; Pergamon Press: Oxford, 1991; Vol. 5, p 971
  8. Nonhebel, D. C. Chem. Soc. Rev. 1993, 347
  9. Reissig, H.-U. Top. Curr. Chem. 1988, 144, 73 https://doi.org/10.1007/BFb0111229
  10. Wong, H. N. C.; Hon, M.-Y.; Tse, C.-W.; Yip, Y.-C.; Tanko, J.; Hudlicky, T. Chem. Rev. 1989, 89, 165 https://doi.org/10.1021/cr00091a005
  11. Goldschmidt, Z.; Crammer, B. Chem. Soc. Rev. 1988, 17, 229 https://doi.org/10.1039/cs9881700229
  12. Hudlicky, T.; Fan, R.; Reed, J.; Gadamasetti, K. G. Org. React. 1992, 41, 1
  13. Davies, H. M. L. Tetrahedron 1993, 49, 5203 https://doi.org/10.1016/S0040-4020(01)82371-1
  14. Mann, J. Tetrahedron 1986, 42, 4611 https://doi.org/10.1016/S0040-4020(01)82046-9
  15. Doyle, M. P. In Catalytic Asymmetric Synthesis; Ojima, I., Ed.; VCH: Weinheim, 1993; p 63
  16. Salaun, J. Chem. Rev. 1989, 89, 1247 https://doi.org/10.1021/cr00095a017
  17. Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49 https://doi.org/10.1021/cr950016l
  18. Charette, A. B.; Marcoux, J.-F. Synlett 1995, 1197
  19. Reissig, H.-U. Angew. Chem., Int. Ed. 1996, 35, 971 https://doi.org/10.1002/anie.199609711
  20. Aratani, T. Pure Appl. Chem. 1985, 57, 1839 https://doi.org/10.1351/pac198557121839
  21. Hartley, R. C.; Caldwell, S. T. J. Chem. Soc., Perkin Trans. 1 2000, 477
  22. Donalson, W. A. Tetrahedron 2001, 57, 8589 https://doi.org/10.1016/S0040-4020(01)00777-3
  23. Simmons, H. E.; Cairns, T. L.; Vladuchick, S. A.; Hoiness, C. M. Org. React. 1973, 20, 1
  24. Furukawa, J.; Kawabata, N. Adv. Organomet. Chem. 1974, 12, 83 https://doi.org/10.1016/S0065-3055(08)60451-7
  25. Boersma, J. In Comprehensive Organometallic Chemistry; Wilkinson, G., Ed.; Pergamon Press: New York, 1984; Vol. 2. Chapter 16
  26. Charette, A. B.; Beauchemin, A. Org. React. 2001, 58, 1
  27. Denmark, S. E.; Beutner, G. In Cycloaddition Reactions in Organic Synthesis; Kobayashi, S., Jorgensen, K. A., Eds.; Wiley-VCH: New York, 2001; p 85
  28. Fang, W.-H.; Phillips, D. L.; Wang, D.-Q.; Li, Y.-L. J. Org. Chem. 2002, 67, 154 https://doi.org/10.1021/jo0107655
  29. Doyle, M. P.; Forbes, D. C. Chem. Rev. 1998, 98, 911 https://doi.org/10.1021/cr940066a
  30. Rovis, T.; Evans, D. A. Prog. Inorg. Chem. 2001, 57, 1
  31. Singh, V. K.; DattaGupta, A.; Sekar, G. Synthesis 1997, 137
  32. Calter, M. A. Curr. Org. Chem. 1997, 1, 37
  33. Evans, D. A.; Woerpel, K. A.; Hinman, M. M.; Faul, M. M. J. Am. Chem. Soc. 1991, 113, 726 https://doi.org/10.1021/ja00002a080
  34. Evans, D. A.; Woerpel, K. A.; Scott, M. J. Angew. Chem. Int. Ed. 1992, 31, 430 https://doi.org/10.1002/anie.199204301
  35. Tang, W.; Hu, X.; Zhang, X. Tetrahedron Lett. 2002, 43, 3075 https://doi.org/10.1016/S0040-4039(02)00317-9
  36. Escribano, A.; Pedregal, C.; González, R.; Fernández, A.; Burton, K.; Stephenson, G. A. Tetrahedron 2001, 57, 9423 https://doi.org/10.1016/S0040-4020(01)00949-8
  37. Calo, V.; Nacci, A.; Lopez, L.; Lerario, V. L. Tetrahedron Lett. 2000, 41, 8977 https://doi.org/10.1016/S0040-4039(00)01593-8
  38. Artaud, I.; Seyden-Penne, J.; Viout, P. Synthesis 1980, 34
  39. Hudlicky, T.; Radesca, L.; Luna, H.; Anderson, F. E. J. Org. Chem. 1986, 51, 4746 https://doi.org/10.1021/jo00374a055
  40. Hakam, K.; Thielmann, M.; Thielmann, T.; Winterfeldt, E. Tetrahedron 1987, 43, 2035 https://doi.org/10.1016/S0040-4020(01)86785-5
  41. Badiani, K.; Lightfoot, P.; Gani, D. J. Chem. Soc., Chem. Commun. 1996, 675
  42. Cluet, F.; Haudrechy, A.; Leber, P.; Sinay, P.; Wick, A. Synlett 1994, 913
  43. Shibata, I.; Mori, Y.; Yamasaki, H.; Bada, A.; Matsuda, H. Tetrahedron Lett. 1993, 34, 6567 https://doi.org/10.1016/0040-4039(93)88106-S
  44. Lee, Y. R.; Hwang, J. C. Eur. J. Org. Chem. 2005, 1568
  45. Lee, Y. R.; Cho, B. S.; Kwon, H. J. Tetrahedron 2003, 59, 9333 https://doi.org/10.1016/j.tet.2003.09.087
  46. Lee, Y. R.; Kim, D. H. Tetrahedron Lett. 2001, 42, 6561 https://doi.org/10.1016/S0040-4039(01)01345-4
  47. Lee, Y. R.; Suk, J. Y.; Kim, B. S. Tetrahedron Lett. 1999, 40, 8219 https://doi.org/10.1016/S0040-4039(99)01714-1
  48. Lee, Y. R.; Suk, J. Y. Chem. Commun. 1998, 2621
  49. Lee, Y. R.; Suk, J. Y. Tetrahedron 2002, 58, 2359 https://doi.org/10.1016/S0040-4020(02)00118-7
  50. Lee, Y. R.; Suk, J. Y. Tetrahedron Lett. 2000, 41, 4795 https://doi.org/10.1016/S0040-4039(00)00716-4
  51. Lee, Y. R.; Suk, J. Y.; Kim, B. S. Tetrahedron Lett. 1999, 40, 6603 https://doi.org/10.1016/S0040-4039(99)01317-9
  52. Taber, D. F.; Ruckle Jr., R. E.; Hennessy, M. J. J. Org. Chem. 1986, 51, 4077 https://doi.org/10.1021/jo00371a034
  53. Ostergaard, N.; Jensen, J. F.; Tanner, D. Tetrahedron 2001, 57, 6083 https://doi.org/10.1016/S0040-4020(01)00583-X
  54. Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861 https://doi.org/10.1021/cr0200217

Cited by

  1. Efficient Synthesis of Spirobarbiturates and Spirothiobarbiturates Bearing Cyclopropane Rings by Rhodium(II)-Catalyzed Reactions of Cyclic Diazo Compounds vol.34, pp.6, 2013, https://doi.org/10.5012/bkcs.2013.34.6.1735
  2. Silver Tetrafluoroborate Mediation vol.2015, pp.2090-9071, 2015, https://doi.org/10.1155/2015/629085
  3. Rh2(O-Piv)4-Catalyzed Reactions of Diazo Compound Derived from Meldrum′s Acid and Styrenes. Efficient Synthesis of Cyclopropanes. vol.37, pp.36, 2006, https://doi.org/10.1002/chin.200636148
  4. Rh(II)-mediated domino [4 + 1]-annulation of α-cyanothioacetamides using diazoesters: A new entry for the synthesis of multisubstituted thiophenes vol.13, pp.None, 2006, https://doi.org/10.3762/bjoc.13.253
  5. Blue LED Irradiation of Iodonium Ylides Gives Diradical Intermediates for Efficient Metal‐free Cyclopropanation with Alkenes vol.131, pp.47, 2006, https://doi.org/10.1002/ange.201908994
  6. Blue LED Irradiation of Iodonium Ylides Gives Diradical Intermediates for Efficient Metal‐free Cyclopropanation with Alkenes vol.58, pp.47, 2006, https://doi.org/10.1002/anie.201908994
  7. New, stable and reusable magnetic Fe3O4/PEG@CPTMS-thioaminophenol@Ni nanocatalyst for the synthesis of dispiro-cyclopropanes’s Meldrum’s acid vol.17, pp.2, 2006, https://doi.org/10.1007/s13738-019-01775-3
  8. Structural and Synthetic Insights into Sodium‐Mediated‐Ferration of Fluoroarenes vol.104, pp.12, 2006, https://doi.org/10.1002/hlca.202100206