Abstract
The heterogeneous association behaviour of various concentration binary mixtures of mono alkyl ethers of ethylene glycol with ethyl alcohol were investigated by dielectric measurement in benzene solutions over the entire concentration range at 25 ${^{\circ}C}$. The values of static dielectric constant $\epsilon_0$ of the mixtures were measured at 1 MHz using a four terminal dielectric liquid test fixture and precision LCR meter. The high frequency limiting dielectric constant $\epsilon_\infty$ values were determined by measurement of refractive index $n_D$ ($\epsilon_\infty\;=\;n_D\;^2$). The measured values of $\epsilon_0$ and $\epsilon_\infty$ were used to evaluate the values of excess dielectric constant $\epsilon^E$, effective Kirkwood correlation factor $g^{eff}$ and corrective correlation factor $g_f$ of the binary polar mixtures to obtain qualitative and quantitative information about the H-bond complex formation. The non-linear behaviour of the observed $\epsilon_0$ values of the polar molecules and their mixtures in benzene solvent confirms the variation in the associated structures with change in polar mixture constituents concentration and also by dilution in non-polar solvents. Appearance of the maximum in $\epsilon^E$ values at different concentration of the polar mixtures suggest the formation of stable adduct complex, which depends on the molecular size of the mono alkyl ethers of ethylene glycol. Further, the observed $\epsilon^E$ < 0 also confirms the heterogeneous H-bond complex formation reduces the effective number of dipoles in these polar binary mixtures. In benzene solutions these polar molecules shows the maximum reduce in effective number of dipoles at 50 percent dilutions. But ethyl alcohol rich binary polar mixtures in benzene solvent show the maximum reduce in effective number of dipoles in benzene rich solutions.