DOI QR코드

DOI QR Code

The Base Catalyzed Synthesis of Sucrose Ester Containing Omega-3 Fatty Acids

오메가 3 지방산을 함유한 Sucrose Ester의 합성

  • Shin, Jung-Ah (Dept. of Food Science and Technology, Chungnam National University) ;
  • Jang, Ji-Sun (Dept. of Food Science and Technology, Chungnam National University) ;
  • Hong, Jang-Hwan (Neomega Corp.) ;
  • Lee, Ki-Teak (Dept. of Food Science and Technology, Chungnam National University)
  • Published : 2006.09.01

Abstract

Sucrose esters were synthesized by transesterification of sucrose with docosahexaenoic acid ethylester mixture (DHAEE). Potassium carbonate as a base catalyst was used in the presence of dimethylsulfoxide (DMSO) for the reactions. The reactions were performed with the different reaction times and molar ratios of substrates in the presence of surfactant in vacuum. Among the reaction conditions in this study, SE#4~7 showed the relatively high conversion rate (>96%) of DHAEE, leading to the high yield of sucrose esters. In addition, the product composition was changed from sucrose mono ester to di/tri/polyesters after the prolonged reaction time while the increased molar ratio of DHAEE also resulted in the composition changes of sucrose mono ester to the sucrose di/tri/polyesters. From the reaction (SE#7), conversion ratio was 98.5% in which 87.3% mono ester and 13.7% di/tri/polyester were found, resulting in the highest content of mono ester. Therefore, the sucrose ester containing various rates of mono and di/tri/polyesters, which effects on hydrophilic lipophilic balance (HLB) values, can be manipulatively synthesized using the reaction conditions reported in this study.

고급불포화지방산인 docosahexaenoic acid ethylester (DHAEE)와 sucrose를 transesterification반응을 하여 sucrose ester를 기질 및 촉매의 비율, 반응시간, 용매사용 및 기압 등을 달리하여 합성하고, 합성율을 살펴보았고, 특히, 섭취 시 인체 내에서 이용 가능한 DHA를 함유하고 있으며, hydrophilic한 유화제로써 sucrose fatty acid mono ester의 합성율을 높이는 합성조건을 연구하였다. 무용매 상태에서의 sucrose ester의 합성율이 낮았기 때문에 반응용매로써 dimethyl sulfoxide(DMSO)를 사용하여 몰비율과 반응시간에 따른 합성을 실시하였다. 여러 반응조건 중 DHAEE의 전환율(%)은 sucrose:DHAEE의 몰비율이 1:0.98, 1:0.60, 1:0.40, 1:0.20인 SE#4, SE#5, SE#6, SE#7에서 모두 96% 이상을 나타내었다. 특히, SE#6(1:0.4 mole)에서 반응시간에 따른 전환율과 sucrose ester의 조성변화를 살펴본 결과, 반응시간 1시간일 때 55.3%의 전환율(mono ester 91.6%)을 보였고, 이후 반응 3.5시간일 때에는 97.1%(mono ester 66%)의 전환율을 보였다. 따라서 반응초기에 대부분의 sucrose ester가 합성되며, 특히 반응시간이 길어짐에 따라 mono ester에서 di-, tri- 및 polyester로 그 조성이 점차 변화됨을 확인하였고, 기질 중 DHAEE의 비율이 증가할수록 sucrose mono ester의 생성은 감소한 반면에, sucrose di-, tri- 및 polyester의 생성은 증가함을 확인하였다. 연구된 합성조건 중 sucrose mono ester의 합성은 1:0.2(sucrose:DHAEE)의 몰비율로 2.5시간동안 반응(SE#7)하였을 때 98.5%의 높은 전환율을 보이면서 그 조성은 87.3%로 가장 높게 합성되었다.

Keywords

References

  1. Nakamura S. 1997. Using sucrose esters as food emulsifiers. INFORM 8: 866-874
  2. Eldridge AL, Cooper DA, Peters JC. 2002. A role for olestra in body weight management. Obesity Rev 3: 17-25 https://doi.org/10.1046/j.1467-789X.2002.00050.x
  3. Schlagheck TG, Riccardi KA, Zorich NL, Torri SA. 1997. Olestra dose response on fat-soluble and water-soluble nutrients in humans. J Nutr 127: 1646S-1665S
  4. Freston JW, Ahnen DJ, Czinn SJ, Earnest DL, Farthing MJ, Gorbach SL, Hunt RH, Sandler RS, Schuster MM. 1997. Review and analysis of the effects of olestra, a dietary fat substitute, on gastrointestinal function and symptoms. Regul Toxicol Pharmacol 26: 210-218 https://doi.org/10.1006/rtph.1997.1165
  5. Akoh CC. 1995. Lipid-based fat substitutes. Crit Rev Food Sci Nutr 35: 405-430 https://doi.org/10.1080/10408399509527707
  6. Le Coent AL, Tayakout-Fayolle M, Couenne F, Briançon S, Lieto J, Fitremann-Gagnaireb J, Queneau Y, Bouchu A. 2003. Kinetic parameter estimation and modelling of sucrose esters synthesis without solvent. Chem Engineering Sci 58: 367-376 https://doi.org/10.1016/S0009-2509(02)00474-8
  7. Cruces MA, Plou FJ, Ferrer M, Bernabé M, Ballesteros A. 2001. Improved synthesis of sucrose fatty acid monoesters. J Am Oil Chem Soc 78: 541-546 https://doi.org/10.1007/s11746-001-0300-5
  8. Cao L, Bornscheuer UT, Schmid RD. 1999. Lipase-catalyzed solid-phase synthesis of sugar esters. Influence of immobilization on productivity and stability of the enzyme. J Molecular Catalysis B: Enzymatic 6: 279-285 https://doi.org/10.1016/S1381-1177(98)00083-6
  9. Yan Y, Bornscheuer UT, Stadler G, Lutz-Wahl S, Reuss M, Schmid RD. 2001. Production of sugar fatty acid esters by enzymatic esterification in a stirred-tank membrane reactor: Optimization of parameters by response surface methodology. J Am Oil Chem Soc 78: 147-153 https://doi.org/10.1007/s11746-001-0235-x
  10. Ferrer M, Cruces MA, Bernabé M, Ballesteros A, Plou FJ. 1999. Lipase-catalyzed regioselective acylation of sucrose in two-solvent mixtures. Biotechnol Bioeng 65: 10-16 https://doi.org/10.1002/(SICI)1097-0290(19991005)65:1<10::AID-BIT2>3.0.CO;2-L
  11. Ruxton CHS, Reed SC, Simpson MJA, Millington KJ. 2004. The health benefits of omega-3 polyunsaturated fatty acids: a review of the evidence. J Hum Nutr Dietet 17: 449-459 https://doi.org/10.1111/j.1365-277X.2004.00552.x
  12. Han BS. 2004. Purification method of sucrose fatty acid ester. Korean Intellectual Property Office 10-0443077
  13. Moha MH, Tanga TS, Tanb GH. 2000. Improved separation of sucrose ester isomers using gradient high performance liquid chromatography with evaporative light scattering detection. Food Chem 69: 105-110 https://doi.org/10.1016/S0308-8146(99)00226-5
  14. Akoh CC, Swanson BG. 1987. One-stage synthesis of raffinose fatty acid polyesters. J Food Sci 52: 1570-1576 https://doi.org/10.1111/j.1365-2621.1987.tb05881.x
  15. Kononenko OK, Herstein KM. 1956. Nonaqueous solvents for sucrose. Chem Eng Data Ser 1: 87-93 https://doi.org/10.1021/i460001a017
  16. Chung HY, Kim SJ, Yoon SW, Yoon HN, Kong UY. 1992. Effect of free alkali and moisture on sucrose polyester synthesis. Korean J Food Sci Technol 24: 247-250