

차세대반도체산업의 국제표준화 기반구축사업

디지털표준과 공업연구관 이상근 02)509-7266~70 sglee@ats.go.kr

1. 개요

□ 산업적 특성

- 차세대반도체는 10대 신성장동력산업의 핵심· 기반산업이며, 주로 메모리반도체, SoC, 센서/ 멤스, 나노소자, 시스템IC 등이며 전자산업. 정 보통신산업 등 디지털/정보화시대를 주도하는 전방산업의 중추적인 제품으로서 흔히"산업의 쌀"로 불림
 - 수출비중 15 %, GDP 비중 5 %로 국가 경제 성장의 원동력
 - 반도체산업은 디지털정보가전·컴퓨터·정보통 신기기 등의 핵심부품산업으로 전·후방 효과 가 크고, 디스플레이와 더불어 우리나라의 주 력 수출산업
- 시스템의 핵심부품이며 새로운 제품. 산업간의 융합으로 전통산업과 첨단산업까지 시장경쟁 원 동력
- 반도체기술이 발달하면서 가전,컴퓨터,통신,방

송 등의 융합을 견인하여 기존 제품·산업간 경계의 파괴를 주도

- 디지털 전자제품의 수출 경쟁력 제고
- 반도체 가공 극한기술은 초정밀 가공기술에 공헌
- 자동차 등 일반제품의 IT화를 뒷받침
- 주도권 향방에 따라 반도체는 물론 전자산업 전 체구도를 재편
 - 반도체업체들은 자사의 주력제품을 중심으로 타 부품을 통합중이며, 가전·IT업체 등도 반 도체산업에 새롭게 진출 중
 - 산업판도변화의 핵심인 반도체의 주도권 확보 를 위하여 미국, 일본, 대만 등에서 국가차원 의 전략품목으로 기술개발. 표준화 등을 추진

□ 표준화 특성

- 반도체는 시스템에 적용되는 핵심부품으로 표 준사양이 매우중요
 - 사용자(시스템메이커)와 공급자와의 공동 표 준체정
 - 인텔, MS, 소니, 삼성 등 IT제품 주도업체가

20 · 기술표준 05년 7월호

OLOLOLOLOLOLOLOGIA

표준 영향력과시

- 차세대반도체의 성격이 기술주도형에서 시장지 향형으로 변화
 - 제조기술측면보다는 마케팅, 표준화 등이 더욱 중요
 - 표준화유도를 통해 고객을 선도하며 지속적인 수요창출
- 기술우위보다는 표준장악이 경쟁의 핵심요소로 등장
 - 우수한 제품·기술도 표준화하지 못하면 결국 시장에서 도태
 - 표준을 주도하는 기업이 관련 제품에 대한 독 점적인 이윤을 확보
 - 세계가 하나의 시장으로 통합되면서 국제표준 은 더욱 확산 예상
 - 성공사례 : 삼성전자는 DDR SD램 표준화로 2002년이후 메모리산업 주도
 - 90년대초 일본 NEC 주도로 SD램 표준화 진행
 - 98년 삼성전자의 DDR SD램 표준안 최종 채택 : 산업 표준사양 주도
 - 현재 DDR2, DDR3, 플래시 카드 표준화

주도적 참여중

- 지속적인 비교우위 확보를 위한 표준화 대응필 요
 - 차세대메모리는 삼성전자 등 메이저업체를 보유하고 있어 지속적인 영향력 행사 가능
 - 멤스·센서·나노소자 등은 체계적인 분류 및 국제표준의 선점활동 필요

2. 국내외 표준화 현황

□ 국제표준화 현황

- 반도체는 주로 IEC TC 47(반도체소자) 기술 위원회에서 SC 47A(집적회로), SC 47D(기구 적표준화), SC 47E(개별반도체소자) 등 3개 분 과위원회 및 총22개 작업반(WG) 구성 운영
- 반도체분야의 국제표준은 IEC의 1개 TC 및 3 개 SC (22개 WG)에서 총 207종 규격(151개 제정규격, 56개 진행중)
 - 최근부터 국제간사의 업무주도 (4개의 TC/SC중 2명, 50%)

국제표준기구	제정분야	국제규격수	국내대응여부
	TC 47 반도체소자	47(25)	
IEC	SC 47A 집적회로	43(13)	TC/SC의 국제간사(2명) WG컨비너 (1명)의 업무 주도로 멤스 및 반도
ILO	SC 47D 기구적표준화	25(10)	체센서 등 22개 WG에 대응 10명의
	SC 47E 개별반도체소자	36(8)	국내전문가참여조직 구축

* ()는 현재 IEC 제정진행중인 규격(총 56개)

- 10명의 전문가 활동
- → 덷스 및 반도체센서 분야에서 7종(3 4 %)의 우리기술을 반영중
- 22개의 WG중 1명의 컨비너(4.5 % 점유). ① 한국은 1종의 제정규격 및 6종의 진행중인 국제 규격 등 센서 및 덷스 분야에서 7종의 우리기술 을 제안 반영중

표준기구	분야	규격 또는 기술명	제안년도	현재단계
IEC	개별반도체	반도체센서의 일반 및 분류	1997	IŞ
IEC	반도체소자	멤스의 용어 및 정의	2002	의견반영 CDV
IEC	반도체소자	멤스의 품목규격	2004	WD
IEC	반도체소자	RF멤스 스위치	2005	NP제안
IEC	개별반도체	CMOS 이미지센서	2005	NP제안
IEC	개별반도체	반도체PN접합형 온도센서	2005	NP제안
IEC	개별반도체	초고압 다이오드	2005	NP준비

□ 사실상표준화 현황

- 메모리반도체의 표준을 실질적으로 JEDEC이 주관하며 D램, S램, 플래시메모리, 메모리 모듈 등 모든 메모리반도체의 전기적 표준을 제정하 며, 이외에 신뢰성, 패키지 등 이에 수반된 표준 도 모두 제정하고 있음
 - 최근 USB Driver 등 각종 메모리 카드가 등 장하면서, 소니 등 Consumer 제품 생산 업체 가, 마케팅 목적의 자사 제품용 카드 사양을 제정
- 사실상 표준화 기구인 JEDEC 이사회 의장으로 삼성전자 미국법인(SSI) 디렉터인 미안 쿼더스 2004년 선출되어 2년 일기 수행중

- 사실상 표준화 기구인 JEDEC에서 삼성전자 가 메모리반도체분야 4개의 분과위원회에서 2 명(40%)의 의장직을 담당
- 05 66~611 한국 서울에서 JEDEC의 메 모리반도체 표준화회의 국내 최초 개최로 5개 위원회별 제품표준제정 논의
 - DDR3 SD램 표준제정과 MCP(Multi-Chip Package) 등 모바일 분야의 우리기술 채택
 - 플래시메모리 카드 표준을 제정하기 위한 플 대시카드 위원회가 최초로 발족
- 한국은 JEDEC에서 메모리 기술사양 결정 및 설계기술 검토하는 메모리위원회(JC 42) 등 4 개 분야에서 활동 중

22 · 기술표준 05년 7월호

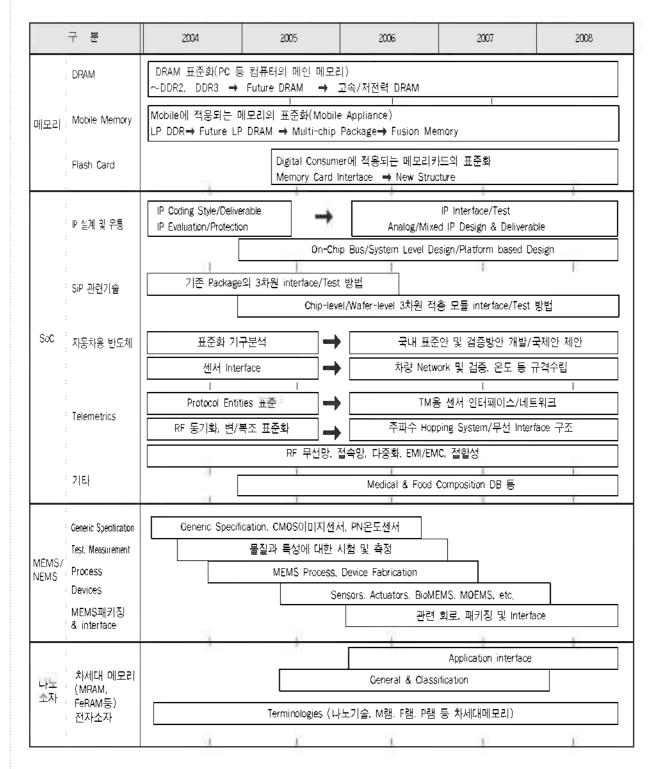
0101010110110101010

단체표준기구	제정분야	국제규격수	국내대응여부
	JC 42 메모리	7	메모리반도체분과위원회
JEDEC	JC 16 인터페이스	19	의장단(2명 40 %) 활동 및 삼성전자, 하이닉스 전문가가
JEDEG	JC 11 기구특성	7	위원회에대응 10명의 국내전문가 참여조직 구축
	JC 14 품질·신뢰성	105	

□ 국내표준화 현황

- IEC TC 47(반도체소자)의 국제간사 수임으로 한국의 역할강화
 - 한국 우위의 JEDEC 표준제안 지속적 추진
- 반도체센서 및 멛스의 기반기술에서 국제표준을 주도
- IEC TC 47/SC 47E(반도체소자)에서 시장 보다 앞서 표준개발
- 국내전문가의 표준화활동으로 국제표준 7종의 우리기술 반영
- IEC규격의 KS 규격 도입
 - 반도체분야 IEC규격 151개중 85개(56 %) KS규격화(2005.7현재)

규격분류	제정분야	국가규격수	비고
ĸs	반도체소자	34	
	집적회로	27	
	기구적표준화	0	
	개별반도체소자	24	


- 메모리의 강자인 삼성전자가 JEDEC의 단체표 준화 활동 주도
 - D램 관련 분과위원회 의장단의 한국활동 비중 (40 %) 확대
 - DDR3 SD램, 플래시메모리 등 메모리 규격의 제안비중(43 %) 확대
- 향후 우리기술이 반영된 IEC국제표준으로 제안
- 및 차세대메모리반도체의 JEDEC 표준제안 등 국제활동 강화
- IEC국제표준 제안 "(멤스의 품목규격" 등 15 종)
- JEDEC, IEEE 단체표준 제안 '(DDR3 SD 램의 사양'' 등 22종)

0101010110101010

□ 표준화 로드맵('04~'08)

OLOLOLOLIOLOLOLOGIA

3. 사업의 목표 및 내용

3.1 사업의 최종목표 및 내용

- 산업체의 실수요에 부응하는 표준화 구축과 성 과의 극대화
- 차세대반도체 국가규격(안)을 도출하여 우리나
- 라 차세대반도체 산업의 국제 경쟁력 강화에 기여
- 우리기술을 국제 표준에 적극 반영과, 국제표준 화기구에서 의장, 간사, 프로젝트리더 수임을 통 한 국제적 위상 제고
- 차세대반도체 기술의 국제 표준을 선도하기 위 한 표준화 인프라 구축

최 종 목 표	세 부 목 표
산업체의 실수요에 부용 하는 표준화 구축과 성과 의 극대화	○ 국제표준의 국가표준(KS) 일치화 추진 ○ 차세대반도체 분야 국내 연구결과 및 기술의 국가 및 국제 표준화 동시 추진 ○ 산업현장 적용을 통한 효율적인 관리체계 구축
차세대반도체 국가규격(안) 도출	○ 차세대반도체 각 세부분야별 용어, 정의 표준화 ○ 차세대반도체 각 세부분야별 용어집 발간 ○ 차세대반도체 분야의 기존 국제 규격(IEC, ISO, JEDEC 등)의 국가규격(안) 도출
차세대 반도체 국제표준화 주도 및 국제 협력 강화	○ 차세대반도체 분야의 국제표준 활동 적극 참여 ○ 국제표준화기구(IEC, ISO 등)의 TC/SC 의장, 간사 및 프로젝트 리더 수임 ○ 차세대반도체 분야의 국제 협력 강화 ○ 차세대반도체 기술 국제표준화 주도를 위한 전략 수립 및 추진
차세대반도체 표준화 인프라 구축	○ 체계적인 차세대반도체 표준화 전문인력 양성 ○ 표준화 정보제공시스템 구축 및 제공 ○ 국내 차세대반도체 기업의 표준회에 대한 인식 제고 및 표준화 역량 강화

010101011010101010

3.2 연차별 사업목표 및 내용

구 분	연차별 사업목표	주요 사업내용
1차년도	차세대반도체 국제표준화 동향파악 및 국제규격 제안	○ 차세대반도체(메모리, 멤스, 나노소자 등) 각국 표준규격 (IEC, ISO 등)의 용어 번역, 분석 ○ 표준용어 개발을 위한 세미나개최, 용어집발간 ○ 메모리.멤스 등 국제/단체규격 제안 : 5종 〈참고1 : 국제/단체규격(IEC/JEDEC) 제안 5개년 계획〉 ○ 국내 산학연 전문가회의 및 표준화워크샵 개최
2차년도	차세대반도체 표준화 기반구축 및 국제규격 제안	○ 차세대반도체 용어 정보D/B 구축, KS용어제안, 표준용어집 발행 ○ 메모리.센서멤스 등 국제/단체규격 제만 : 8종 〈참고1 : 국제/단체규격(IEC/JEDEC) 제안 5개년 계획〉 ○ 멤스 표준화추진 로드맵 작성 ○ 국내 산학연 전문가회의 및 표준화워크샵 개최
3차년도	국제표준화 적극참여 및 국제협력 강화	○ 메모리,센서멤스 등 국제/단체규격 제안 : 8종 〈참고1 : 국제/단체규격(IEC/JEDEC) 제안 5개년 계획〉 ○ 국제표준화기구 의장/간사/프로젝트 리더 수임 및 선진표준 국내도입 연구 ○ 멤스용어 KS규격 제정 및 용어집 발행 ○ 국내 산학연 전문가회의 및 표준화워크샵 개최
4차년도	차세대반도체 국제표준화 주도	○ 메모리,센서멤스 등 국제/단체규격 제안 : 7종 〈참고1 : 국제/단체규격(IEC/JEDEC) 제안 5개년 계획〉 ○ 차세대반도체 용어개발 및 분석, 차세대시스템의 KS 규격 용어 제안 ○ 국내 산학연 전문가회의 및 표준화워크샵 개최
5차년도	차세대반도체 국제표준화 선도 및 국가규격(안) 작성	○ 국제표준화기구 의장/간사/프로젝트 리더 수임 및 선진표준 국내도입 연구 ○ 메모리.센서멤스 등 국제/단체규격 제안 : 7종 〈참고1 : 국제/단체규격(IEC/JEDEC) 제안 5개년 계획〉 ○ 국제/국가표준 유지관리 (Maintenance)

OLOLOLOLIOLOLOLOGIO

4. 사업의 추진 전략 및 체계

4.1 사업의 추진전략 및 체계

□ 추진전략

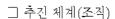
- 국내 반도체관련 산학연의 전문기관 주관으로 국제규격(안) 도출, 국제표준화활동 확대 및 강 화
 - 차세대 반도체의 사실표준 주도를 위한 민관 공동협력 활동강화
 - 한국제안의 단체표준(JEDEC)의 구축으로 국 제표준화활동의 주도적 역할
 - IEC TC 47(반도체소자)기술위원회에 데모 리. 센서/덴스, 나노소자 등의 분과위원회 및 WG을 결성
 - IEC TC 47 국제회의 개최 및 참가 활동지원
 - 원할한 국제활동을 위하여 내실 있는 국내WG 회의 개최 활동을 체계적으로 지원
- 국내 반도체산업을 대표하고 공공의 업무를 수 행할 수 있는 기관을 주관기관으로 선정하고 주 관기관내 분야별 전문가로 WG위원을 구성하여 WG별 국내표준화 활동 강화
 - 주관기관내 분야별 전문가들로 위원을 구성하

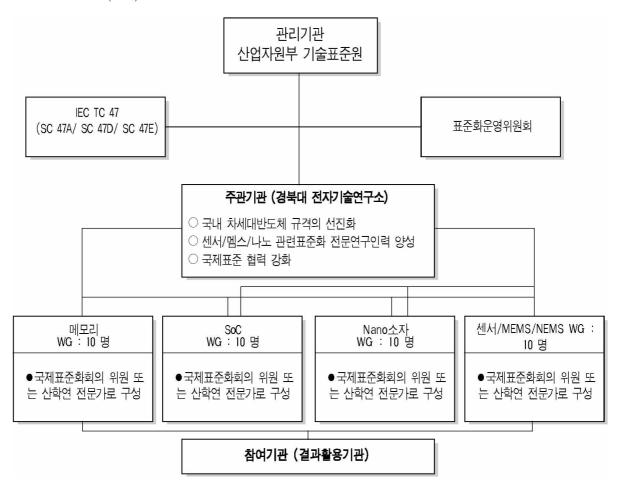
- 여 분야병 추진
- 각 WG분야별 상호 유기적인 연계가 이루어질 수 있도록 하기 위해 분기별 표준화 전체회의 를 개최
- 각 WG분야별로 도출되는 쟁점들에 대해 다양한 의견이 반영될 수 있도록 분기별로 산학연관 기술표준 워크샵을 개최
- 산학연관 전문가로 분야별 WG(전문가 그룹) 을 구성
- 차세대반도체 표준화를 위한 국제적 활동내용에 대한 정기적 정보수집하여 국내 업계제공(DB구축 등)
 - 차세대반도체 국제표준화 활동내용에 대한 정 보 제공
 - 일본, 미국 등 차세대반도체 기술표준화 선진 국 전문가의 의견을 수렴코저 초청 또는 방문 등 국제표준화 활동 강화

□ 유관사업과의 연계방안

- 차세대반도체는 10대 성장동력의 기반기술로서 관련 사업과 연계 추진
 - 디지털TV, 텔레메틱스, 차세대자동차, 로봇, 바이오 등의 시스템과 융합하여 차세대 제품 을 창출하므로 모든 10대 성장동력과 연계추 진

IT Gentric


Next Generation Products


Nano/MEMS

System-on-a-Chip (SOC)

5. 사업의 기대효과 및 파급효과

- 국내 산업규격의 선진화를 통해 우리나라 차세 대반도체 제품의 신뢰성 및 경쟁력 확보
 - 국제화 경향에 맞춰 국가표준 규격을 도출함 으로 국산 제품의 해외수출 활성화 기대
 - 차세대반도체 수출전망(억불): 200'(00)→ 500'(10)
- 제품의 신뢰성 확보를 통한 수급 안정으로 향후

- 제품 생산 및 신뢰성에 대한 평가시 소요되는 제 반비용 절감
- 사업 추진 연도부터 10개년간 기업 규모에 따라 년간 1억원(소기업) ~10억원(대기업) 비용절감 효과 기대
- IEC국제표준화 의장, 간사 및 프로젝트 리더 등을 수행함에 따라 차세대반도체 기술에 대한 국 제표준 주도 및 국제 위상 제고

28 · 기술표준 05년 7월호

구분(누계)	2004	2006	2008
국제표준화 의장 배출(명)	-	-	1
간사 배출(명)	-	-	1
프로젝트 리더 배출(명)	3	9	15

○ 차세대반도체 관련 표준화 전문 연구인력 양성○ 산업체의 실수요에 부응하는 표준화 구축 구 분

표준화 전문인력 배출(누계) 10명 25명 40명

- 2004 <u>2006</u> <u>2008</u> 생산현장에서 사용되는 부품소재 등에 대한 용어 통일화로 관리상의 애로점 해결

참고1

국제/단체규격(IEC/JEDEC) 제안 5개년 계획

구 분	메모리	센서/멤스/넴스	나노소자	비고
		멤스의 품목규격	-	1종
1차년도	DDR2 SD램 사양 등 4종	-	-	(4종)
2차년도		1. CMOS이미지센서 2. RF멤스 스위치 3. 반도체PN운도센서 4. 초고압다이오드		4종
	모바일용 메모리의 LP DDR 등 4종	-		(4종)
3차년도		1. 반도체온도센서 2. 반도체센서 일반	1.나노소자 용어 2.차세대메모리의 품목규격	4종
	모바일용 메모리의 멀티칩 패키지 등 4종	옵티컬 멤스의 광학적 특성측정	나노전자소자의 분류	(4종)
∧÷II∃⊏		1. 반도체습도센서 2. CIS 인터페이스	M램 인터페이스	3종
4차년도	모바일용 메모리의 멀티칩 패키지 등 4종	-	•	(4종)
5차년도		1.광 액츄에이터 특성측정 2. 멤스/넴스 패키지 및 인터페이스	P램 인터페이스	3종
	신구조의 메모리카드 등 4종	-	-	(4종)
IEC(JEDEC)	- (20종)	11종 (1종)	4 종 (1종)	15종 (22종)