DOI QR코드

DOI QR Code

DNA Sequences and Identification of Porphyra Cultivated by Natural Seeding on the Southwest Coast of Korea

한국 남서해안 자연채묘 양식 김의 DNA 염기서열과 종 동정

  • Hwang, Mi-Sook (Seaweed Research Center, South Sea Fisheries Research Institute, NFRDI) ;
  • Kim, Sun-Mi (Department of Biology, Kangnung National University) ;
  • Ha, Dong-Soo (Seaweed Research Center, South Sea Fisheries Research Institute, NFRDI) ;
  • Baek, Jae-Min (Seaweed Research Center, South Sea Fisheries Research Institute, NFRDI) ;
  • Kim, Hyeung-Seop (Department of Biology, Kangnung National University) ;
  • Choi, Han-Gu (Institute for Natural Sciences, Kangnung National University)
  • 황미숙 (국립수산과학원 남해수산연구소 해조류연구센터) ;
  • 김선미 (강릉대학교 생물학과) ;
  • 하동수 (국립수산과학원 남해수산연구소 해조류연구센터) ;
  • 백재민 (국립수산과학원 남해수산연구소 해조류연구센터) ;
  • 김형섭 (강릉대학교 생물학과) ;
  • 최한구 (강릉대학교 자연과학연구소)
  • Published : 2005.09.01

Abstract

Nuclear SSU and ITS1 rDNA and plastid rbcL sequences were determined to identify the seven samples of Porphyra cultivated by means of natural seeding on the southwest coast of Korea and analyzed to access the phylogenetic relationships of them with the natural populations of P. tenera and P. yezoensis from Korea and Japan. SSU, rbcL and ITS1 data from 18, 21 and 31 samples, respectively, including previously published sequences were investigated in the study. Results from our individual and combined data indicated that the seven samples were all P. yezoensis and the entities except one from Muan 2 aquafarm strongly grouped together with the natural populations of P. yezoensis from the south and the west coast of Korea. The sample from Muan 2 seems to be derived from a strain of P. yezoensis introduced from Japan by Porphyra farmers, based on DNA sequence data.

Keywords

References

  1. 강제원. 1970. 한국산 양식 김의 종류. 한국수산학회지 3: 77-92
  2. 고남표, 최규정, 노섬, 고창순. 1980. 김의 품종개량에 관한 연구. 수진연구보고 24: 47-58
  3. 정영균, 손창우, 고창순. 1977. 대엽김의 이식 시험. 수진연구보고 17: 67-75
  4. 황미숙, 이인규. 2001. 한국산 홍조식물 김속(Porphyra)의 분류. Algae 16: 233-273
  5. 황미숙. 이인규. 2002. 한국산 김속(Porphyra) 식물의 식별형질 분석 및 수리분류학적 연구. Algae 17: 217-233 https://doi.org/10.4490/ALGAE.2002.17.4.217
  6. 해양수산부. 2004. 어업생산통계. http://fs.fips.go.kr/index,jsp
  7. Broom J.E., Jones W.A., Hill D.F., Knight G.A. and Nelson W.A. 1999. Species recognition in New Zealand Porphyra using 185 rDNA sequencing. J. Appl. Phycol. 11: 421-428 https://doi.org/10.1023/A:1008162825908
  8. Broom J.E., Nelson W.A., Yarish C., Jones W.A., Aguilar Rosas R. and Aguilar Rosas L.E. 2002. A reassessment of the taxonomic status of Porphyra suborbiculaia, Porphyra carolinensis and Porphyra lilliputiana (Bangiales, Rhodophyta) based on molecular and morphological data. Eur. J. Phycol. 37: 227-235 https://doi.org/10.1017/S0967026202003566
  9. Gilbert D.G. 1995. SeqPup-a biosequence editor and analysis application
  10. Huelsenbeck J.P. and Ronquist F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754-755 https://doi.org/10.1093/bioinformatics/17.8.754
  11. Jones W.A., Griffin N.J., Jones D.T., Nelson W.A., Farr T.J. and Broom J.E. 2004. Phylogenetic diversity in South African Porphyra (Bangiales, Rhodophyta) determined by nuclear SSU sequence analyses. Eur. J. Phycol. 39: 197-211 https://doi.org/10.1080/0967026042000202145
  12. Kang J.W. 1972. Species of cultivated Porphyra in Korea. In:Nisizawa K. (ed.) Proceedings of the 7th International Seaweed Symposium. University of Tokyo Press. Tokyo. pp. 108-110
  13. Klein A.S., Mathieson A.C., Neefus C.D., Cain D.F., Taylor H.A., Teasdale B.W., West A.L., Hehre E.J., Brodie J., Yarish C. and Wallace A.L. 2003. Identification of north-western Atlantic Porphyra (Bangiaceae, Bangiales) based on sequence variation in nuclear SSU and plastid rbcL genes. Phycologia 42: 109-122 https://doi.org/10.2216/i0031-8884-42-2-109.1
  14. Kunimoto M., Kito H., Yamamoto Y., Cheney D.P., Kaminishi Y. and Mizukami Y. 1999a. Discrimination of Porphyra species based on small subunit ribosomal RAN gene sequence. J. Appl. Phycol. 11: 203-209 https://doi.org/10.1023/A:1008019409008
  15. Kunimoto M., Kito H., Kaminishi Y., Mizukami Y. and Murase N. 1999b. Molecular divergence of ssu rDNA gene and internal transcribed spacer 1 in Porphyra yezoensis (Rhodophyta). J. Appl. Phycol. 11: 211-216 https://doi.org/10.1023/A:1008023525847
  16. Kunimoto M., Kito H., Mizukami Y., Murase N. and Levine I. 2003. Molecular features of a defined genetic marker for the determination of the Porphyra tenera lineage. J. Appl. Phycol. 15: 337-343 https://doi.org/10.1023/A:1025182508440
  17. Kurogi, M. 1957. Species of cultivated Porphuras. Aquaculture 4:21-27. (Japanese)
  18. Kurogi M. 1961. Species of cultivated Porphyras and their life histories (Study of the life history of Porphyra II). Bull. Tohoku Reg. Fish. Res. Lab. 18: 1-115. (Japanese)
  19. Kurogi M. 1972. Systematics of Porphyra in Japan. In: Abbott I.A. and Kurogi M. (eds), Contributions to the systematics of benthic marine algae of the North Pacific. Japanese Society of Phycology, Kobe. pp. 167-191
  20. Lindstrom S.C. and Fredericq S. 2003. rbcL gene sequence reveal relationships among north-east Pacific species of Porphyra (Bangiales, Rhodophyta) and a new species, P. aestivalis. Phycol. Res. 51: 211-224 https://doi.org/10.1111/j.1440-1835.2003.tb00189.x
  21. Maddison W.P. and Maddison D.R. 1999. MacClade, version 3.08a, Sinauer Associated, Inc., Sunderland, Massachusetts
  22. Miura A. 1988.Taxonomic studies of Porphyra species cultivated in Japan, referring to their transition to the cultivated variety. J. Tokyo Univ. Fish. 75: 311-325
  23. Miura A. and Aruga Y. 1987. Distribution of Porphyra in Japan as affected by cultivation. J. Tokyo Univ. Fish. 74: 41-50
  24. Nelson W.A., Broom J.E. and Farr T.J. 2001. Four new species of Porphyra (Bangiales Rhodophyta) from New Zealand region described using traditional characters and 18S rDNA sequence data. Cryptog. Algol. 22: 263-284 https://doi.org/10.1016/S0181-1568(01)01060-1
  25. Niwa K. and Aruga Y. 2003. Rapid DNA extraction from conchocelis and ITS-1 rDNA sequences of seven strains of cultivated Porphyra yezoensis (Bangiales, Rhodophyta). J. Appl. Phycol. 15: 29-35 https://doi.org/10.1023/A:1022998823920
  26. Niwa K., Kikuchi N., Iwabuchi M. and Aruga Y. 2004. Morphological and AFLP variation of Porphyra yezoensis Veda form. narawaensis Miura (Bangiales, Rhodophyta). Phycol. Res. 52: 180-190
  27. Niwa K., Kikuchi N. and Aruga Y. 2005. Morphological and molecular analysis of the endangered species Porphyra tenera (Bangiales, Rhodophyta). J. Phycol. 41: 294-304 https://doi.org/10.1111/j.1529-8817.2005.04039.x
  28. Oliveira M.C., Kurniawan J., Bird C.J., Rice E.L. Murphy C.A., Singh R.K., Gutell R.R. and Ragan M.A. 1995. A preliminary investigation of the order Bangiales (Bangiophyceae, Rhodophyta) based on sequences of nuclear small-subunit ribosomal RNA genes. Phycol. Res. 43: 71-79 https://doi.org/10.1111/j.1440-1835.1995.tb00007.x
  29. Oohusa T. 1993.The cultivation of Porphyra 'Nori'. In: Ohno M. and Critchley A.T. (eds), Seaweed Cultivation and Marine Ranching, JICA, pp. 57-73
  30. Posada D. and Crandall K.A. 1998. Modeltest: Testing the model of DNA substitution. Bioinformatics 14: 817-818 https://doi.org/10.1093/bioinformatics/14.9.817
  31. Ragan M.A., Bird C.J. Rice E.L., Gutell R.R., Murphy C.A. and Singh R.K. 1994. A molecular phylogeny of the marine red algae (Rhodophyta) based on the nuclear small-subunit ribosomal RNA gene. Proc. Nat. Acad. Sci., USA 91: 7276-7280
  32. Saunders G.W. and Kraft G.T. 1994. Small-subunit rRNA gene sequences from representatives of selected families of the Gigartinales and Rhodymeniales (Rhodophyta). I. Evidence for the Plocamiales ord. nov. Can. J. Bot., 72: 1250-1263 https://doi.org/10.1139/b94-153
  33. Sohn C.H. 1993. Porhyra, Undaria and Hizikia cultivation in Korea. Korean J. Phycol. 8: 207-216
  34. Sohn C.H. 1998. The seaweed resources of Korea. In: Critchley A.T. and Ohno M. (eds), Seaweed resources of the world, JICA, pp.15-31
  35. Stiller J.W. and Waaland J.R. 1993. Molecular analysis reveals cryptic diversity in Porphyra (Rhodophyta). J. Phycol. 29:506-517
  36. Strach-Crain B., Muller D.G. and Goff L.J. 1997. Molecular systematics of Ectocarpus and Kuchuckia (Ectocarpales, Phaeophyceae) referred from phylogenetic analysis of nuclear- and plastid encoded DNA sequences. J. Phycol. 33:152-168 https://doi.org/10.1111/j.0022-3646.1997.00152.x
  37. Suto S. 1957. Species of Porphyras in Tokyo Bay. Aquaculture 4:28-32. (Japanese)
  38. Swofford D.L. 2002. PAVP$\ast$: Phylogenetic analysis using parsimony (and other methods), version 4.0b10. Sinauer Associated, Inc., Sunderland, Massachusetts
  39. Teasdale B., West A., Taylor H. and Klein A. 2002. A simple restriction fragment length polymorphism (RFLP) assay to discriminate common Porphyra (Bangiophyceae, Rhodophyta) taxa from the Northwest Atlantic. J. Appl. Phycol. 14: 293-298 https://doi.org/10.1023/A:1021180315743
  40. Thompson J.D., Gilson T.J., Plewniak F. and Higgins D.G. 1997. The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882 https://doi.org/10.1093/nar/25.24.4876
  41. Ueda S. 1932. Systematic study of the genus Porphyra in Japan. J. Imp. Fish. Inst. 28: 1-45. (In Japanese)
  42. White T.J., Burns T., Lee S. and Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M., Gelfand J., Sninsky J. and White T.J. (eds), PCR Protocols: a guide to methods and applications. Academic Press, Orlando, Florida. pp. 315-322

Cited by

  1. IDENTIFICATION OF THE HIGH-TEMPERATURE RESPONSE GENES FROM PORPHYRA SERIATA (RHODOPHYTA) EXPRESSION SEQUENCE TAGS AND ENHANCEMENT OF HEAT TOLERANCE OF CHLAMYDOMONAS (CHLOROPHYTA) BY EXPRESSION OF THE PORPHYRA HTR2 GENE1 vol.47, pp.4, 2011, https://doi.org/10.1111/j.1529-8817.2011.01008.x
  2. Studies on Anion, Element, Chromaticity and Antioxidant Activities of Commercial Dried Lavers (Porphyra yezoensis) Cultivated in Korea vol.43, pp.2, 2014, https://doi.org/10.3746/jkfn.2014.43.2.323
  3. Complete mitochondrial genome sequence of Pyropia yezoensis (Bangiales, Rhodophyta) from Korea vol.8, pp.2, 2014, https://doi.org/10.1007/s11816-013-0314-z
  4. Genetic polymorphism withinPorphyra yezoensis(Bangiales, Rhodophyta) and related species from Japan and Korea detected by cleaved amplified polymorphic sequence analysis vol.42, pp.1, 2007, https://doi.org/10.1080/09670260601127681
  5. Transcriptome sequencing and comparative analysis of the gametophyte thalli of Pyropia tenera under normal and high temperature conditions vol.25, pp.4, 2013, https://doi.org/10.1007/s10811-012-9921-2
  6. A nuclear fucosyltransferase-like protein, PtFUT, from marine red alga Pyropia tenera (Rhodophyta) confers osmotic stress tolerance 2018, https://doi.org/10.1007/s10811-017-1241-0
  7. Isolation and Characterization of Pure lines of Pigmentation and Morphological Mutants in Porphyra tenera Kjellman (Bangiales, Rhodophyta) vol.43, pp.5, 2010, https://doi.org/10.5657/kfas.2010.43.5.495
  8. NrDNA internal transcribed spacer revealed molecular diversity in strains of red seaweed Porphyra yezoensis and genetic insights for commercial breeding vol.57, pp.5, 2010, https://doi.org/10.1007/s10722-009-9519-y
  9. Transcriptome-Based Identification of the Desiccation Response Genes in Marine Red Algae Pyropia tenera (Rhodophyta) and Enhancement of Abiotic Stress Tolerance by PtDRG2 in Chlamydomonas vol.19, pp.3, 2017, https://doi.org/10.1007/s10126-017-9744-x
  10. Heat Shock Protein Gene Family of the Porphyra seriata and Enhancement of Heat Stress Tolerance by PsHSP70 in Chlamydomonas vol.14, pp.3, 2012, https://doi.org/10.1007/s10126-011-9417-0
  11. GENETIC DIVERSITY AND INTROGRESSION IN TWO CULTIVATED SPECIES (PORPHYRA YEZOENSISANDPORPHYRA TENERA) AND CLOSELY RELATED WILD SPECIES OFPORPHYRA(BANGIALES, RHODOPHYTA) vol.45, pp.2, 2009, https://doi.org/10.1111/j.1529-8817.2009.00661.x
  12. Development and Application of Molecular Markers for Identifying Ulva species in Commercial Pyropia Seafoods vol.47, pp.5, 2014, https://doi.org/10.5657/KFAS.2014.0522
  13. Complete sequence and genetic features of the mitochondrial genome of Pyropia tenera (Rhodophyta) vol.7, pp.4, 2013, https://doi.org/10.1007/s11816-013-0281-4
  14. De novo assembly of transcriptome from the gametophyte of the marine red algae Pyropia seriata and identification of abiotic stress response genes vol.27, pp.3, 2015, https://doi.org/10.1007/s10811-014-0406-3
  15. Molecular identification of Chinese cultivatedPorphyra(Bangiaceae, Rhodophyta) based on the rDNA internal transcribed spacer-1 sequence and random amplified polymorphic DNA markers vol.3, pp.1, 2007, https://doi.org/10.1080/17451000601070863
  16. Heavy Metals (Hg, Pb, Cd) Content and Risk Assessment of Commercial Dried Laver Porphyra sp. vol.45, pp.5, 2012, https://doi.org/10.5657/KFAS.2012.0454
  17. A NEW LOOK AT AN ANCIENT ORDER: GENERIC REVISION OF THE BANGIALES (RHODOPHYTA)1 vol.47, pp.5, 2011, https://doi.org/10.1111/j.1529-8817.2011.01052.x
  18. Overexpression of the Small Heat Shock Protein, PtsHSP19.3 from Marine Red Algae, Pyropia tenera (Bangiales, Rhodophyta) Enhances Abiotic Stress Tolerance in Chlamydomonas vol.44, pp.3, 2017, https://doi.org/10.5010/JPB.2017.44.3.287
  19. Isolation, Morphological Characteristics and Proteomic Profile Analysis of Thermo-tolerant Pyropia yezoensis Mutant in Response to High-temperature Stress pp.2005-7172, 2018, https://doi.org/10.1007/s12601-018-0060-9
  20. Intraspecific variation of gene structure in the mitochondrial large subunit ribosomal RNA and cytochrome c oxidase subunit 1 of Pyropia yezoensis (Bangiales, Rhodophyta) vol.33, pp.1, 2018, https://doi.org/10.4490/algae.2018.33.2.20
  21. PtsHSP19.6, a small heat-shock protein from the marine red alga Pyropia tenera (Rhodophyta), aggregates into granules and enhances heat tolerance pp.1573-5176, 2019, https://doi.org/10.1007/s10811-018-1728-3