DOI QR코드

DOI QR Code

In vitro Biohydrogenation of Linolenic and Linoleic Acids by Microorganisms of Rumen Fluid

반추위액의 미생물에 의한 In vitro 상에서의 리놀렌산과 리놀산의 Biohydrogenation

  • Lee, S.W. (Faculty of Life Science & Technology, Sungkyunkwan University) ;
  • Chouinard, Yvan (Laboratory of Animal Science, Laval University) ;
  • Van, Binh N. (Central Laboratory of Thai Nguyen University of Agriculture and Forestry)
  • 이수원 (성균관대학교 생명공학부) ;
  • ;
  • Published : 2005.12.31

Abstract

In vitro anaerobic incubations of timothy (Phleum pretense L.) forage with bovine rumen fluid were conducted at 39℃ for 0, 3, 6, 9, 24, and 36 h in three trials to examine the biohy- drogenation of linolenic (C18:3) and linoleic acids (C18:2) and their bypass from the rumen. The objectives of the first trial was to study the effect of growth stage (stem elongation, early heading, late heading, and early flowering) and N-fertilization (0 and 120 kg N ha-1) on in vitro biohydrogenation of C18:2 and C18:3. The hydrogenable fraction, the effective disappearance and the bypass of C18:2 and C18:3 were high in timothy harvested at stem elongation, and decr- ease linearly with maturity. The N-fertilization increased the hydrogenable fraction of C18:3, the effective disappearance and the bypass of C18:2 and C18:3. However, the rate of disappearance of C18:2 and C18:3 were not affected by maturity and N-fertilization (P>0.1). In trial 2, the effect of timothy conservation method on in vitro C18:2 and C18:3 biohydrogenation was determined. Silage had the highest effective disappearance of C18:2 and C18:3, and grass hay had lowest one. The amounts of C18:2 and C18:3 biohydrogenated were higher in haylage and silage than in grass hay. Comparative to haylage timothy, the bypass of C18:3 was higher in fresh grass, wilted grass and grass hay. The bypass of C18:2 was higher in fresh grass and silage in comparison to grass hay and haylage. In trial 3, the effects of formic acid and Lactobacillus plantarum inoculum addition to timothy haylage and silage on C18:2 and C18:3 disappearance and bypass were studied. Haylage and silage additives had no effect (P>0.1) on effective disappearance and bypass of C18:2 and C18:3. The addition of formic acid increased the rate of biohydrogenation of C18:3 in haylage and silage, but it decreased the hydrogenable fraction of C18:2 in silage. The results of these three incubation trials show that the hydrogenable fraction and the bypass of C18:2 and C18:3 in timothy decreased with maturity and increased with N-fertilization. Higher amount of C18:2 and C18:3 were biohydrogenated in haylage and silage than in grass hay, and C18:3 ruminal disappearance was higher in fresh grass, wilted grass and grass hay than in haylage.

리놀렌산(C18:3)과 리놀산(C18:2)의 biohydrogenation 과 반추위 내에서의 이들 지방산의 bypass를 검토하기 위하여 3 구로 나누어 티모시 조사료를 반추위액과 함께 in vitro상에서 39℃, 0, 3, 6, 9, 24, 36 시간 동안 혐기 배양 시험을 하였다. 첫번째 시험의 목적은 C18:2과 C18:3의 in vitro biohydrogenation에 대한 조사료의 성장 단계(stem elongation, early heading, late heading, early flowering)와 질소 시비(0 and 120kg N ha-1)의 영향을 시험하는 것이었다. 수소첨가가능분획(hydrogenable fraction), C18:2과 C18:3의 효과적인 소실과 bypass는 stem elongation 시 수확된 티모시에서 높았고, 성숙함에 따라 일정하게 감소하였다. 질소시비구는 C18:3의 수소첨가가능분획, C18:2과 C18:3의 효과적인 소실과 bypass가 증가하였다. 그러나 C18:2과 C18:3의 소실율은 성숙과 질소시비(P≻0.1)에 의해 영향을 받지 않았다. 2번째 시험에서는 in vitro C18:2과 C18:3 biohydrogenation에 대한 티모시 보존 방법의 영향을 보았다. 사일리지는 C18:2과 C18:3를 가장 효과적으로 소실시켰으며, 건초는 가장 효과가 낮았다. C18:2과 C18:3의 biohydrogenation 된 양은 건초에서 보다 헤일리지와 사일리지에서 더 높았다. 티모시 헤일리지와 비교하였을 때 C18:3의 bypass는 신선 목초, 시든풀, 건초에서 더 높았다. C18:2의 bypass는 건초와 헤일리지에 비해 신선목초와 사일리지가 더 높았다. 3번째 시험에서는 C18:2과 C18:3의 소거와 bypass에 대한 티모시 헤일리지와 사일리지에 대한 개미산 첨가와 Lactobacillus plantarum 접종의 효과를 검토하였다. 개미산의 첨가는 헤일리지와 사일리지에 있어서 C18:3의 biohydrogenation 비율을 증가시켰으나 사일리지에 있어서 C18:2의 수소첨가 가능분획을 감소시켰다. 이러한 3가지 배양구의 결과는 티모시에 있어 C18:2과 C18:3의 수소첨가 가능분획과 bypass가 성숙도에 따라 감소하였고 질소시비에 따라 증가하였음을 보여 준다. 헤일리지와 사일리지에서 건초에서 보다 C18:2과 C18:3의 더 많은 양이 biohydrogenation 되었으며 C18:3의 반추위 소실은 헤일리지에서 보다 신선목초, 시든풀, 건초에서 더 높았다.

Keywords

References

  1. Ashes, J. R, Gulati, S. K. and Scott, T. W. 1997. Potential to alter the content and composition of milk fat through nutrition. J. Dairy Sci. 80: 2204 -2212 https://doi.org/10.3168/jds.S0022-0302(97)76169-1
  2. Belanger, G. and McQueen, R E. 1998. Analysis of the nutritive value of timothy grown with varies N nutrition. Grass Forage Sci. 53: 109-119 https://doi.org/10.1046/j.1365-2494.1998.5320109.x
  3. Belanger, G., Michaud, R, Jefferson, P. G., Tremblay, G. F. and Bregard, A. 2001. Improving the nutritive value of timothy through management and breeding. Can. J. Plant Sci. 81:577-585 https://doi.org/10.4141/P00-143
  4. Bauchart, D., Verite, R. and Remond, B. 1984. Long-chain fatty acid digestion in lactating cows fed fresh grass from spring to autumn. Can. J. Anim. Sci. 64(suppl):330-331 https://doi.org/10.4141/cjas84-285
  5. Bauchart, D., Doreau, M. and Legay Carmier, F. 1985. Utilisation digestive des lipids et consequences de leur introduction sur la digestion du ruminant. Bull. Tech. C. R. Z. V. 61:65-77
  6. Collins, M. 1995. Hay preservation effects yield and quality. In Post harvest physiology and preservation of forages, K. J. Moore and M. A. Peterson(Ed.). Special Publication No. 22. Crop Science Society of America, Inc., Madison, WI. pp. 67-89
  7. Demeyer, D. and Doreau, M. 1999. Targets and procedures for altering ruminant meat and milk lipids. Proc. Nutr. Soc. 58:593-607 https://doi.org/10.1017/S0029665199000786
  8. Dewhurst, R. J. and King, P. J. 1998. Effects of extended wilting, shading and chemical additives on the fatty acids in laboratory grass silage. Grass Forrage Sci. 53: 219-224 https://doi.org/10.1046/j.1365-2494.1998.00130.x
  9. Dhiman, T. R., Anand, G. R, Satter, L. D. and Pariza, M. 1999. Conjugated linoleic acid content of milk from cows fed different diets. J. Dairy Sci. 82:2146-2156 https://doi.org/10.3168/jds.S0022-0302(99)75458-5
  10. Fredrickson, E. L., Galyean, M. L., Branine, M. E., Sowell, B. and Wallace, J. D. 1993. Influence of ruminally dispensed monensin and forage maturity on intake and digestion. J. Range Manage. 46: 214-220 https://doi.org/10.2307/4002609
  11. Fujimoto, K., Kimoto, H., Shishikura, M., Endo, Y. and Ogimoto, K. 1993. Biohydrogenation of linoleic acid by anaerobic bacteria isolated from rumen. Biosci. Biotech. Biochem. 57:1026-1027 https://doi.org/10.1271/bbb.57.1026
  12. Gerson, T. A., John, A. and King, A. S. D. 1985. The effects of dietary starch and fiber on the in vitro rates of lipolysis and hydrogenation by sheep rumen digesta. J. Agric. Sci. (Camb) 105: 27-30
  13. Gerson, T. A. and Sinclair, B. R 1983. The effect of dietary N on in vitro lipolysis and fatty acid hydrogenation in rumen digesta from sheep fed diets high in starch. J. Agric. Sci. (Camb) 101:97-101 https://doi.org/10.1017/S0021859600036406
  14. Gervais, P. and St Pierre, J. C. 1979. Influence du stade de croissance a la premiere recolte sur le rendement, la composition chimique et les reserves nutritives de la fleole des pres. Can. J. Plan Sci. 59:177-183 https://doi.org/10.4141/cjps79-025
  15. Graves, R. E. and Vanderstappen, P. J. 1993. Environmental problems with silage effluent. Silage Production: From seed to animal. Syracuse, NY: Northeast Regional Agricultural Engineering Service. NRAES-5
  16. Gulati, S. K., Scott, T. W. and Ashes, J. R 1997. In vitro assessment of fat supplements for ruminant. Anim. Feed Sci. Tech. 64:127-132 https://doi.org/10.1016/S0377-8401(96)01063-2
  17. Harfoot. C. G. 1981. Lipid metabolism in the rumen. In Lipid metabolism in ruminant animals, W.W. Christie(Ed.). Pergamon Press, Oxford. UK. pp. 21-25
  18. Harfoot, C. G. and Hazlewood, G. P. 1988. Lipid metabolism in the rumen. In The rumen microbial ecosystem, P.N. Hobson (Ed). Elsevier Applied Science, New York, NY. pp. 285-22
  19. Harfoot, C. G., Noble, R. C. and Moore, J. H. 1973. Factors influencing the extent of biohydrogenation of linoleic acid by rumen micro-organism in vitro. J. Sci. Food. Agric. 24:961-970 https://doi.org/10.1002/jsfa.2740240814
  20. Hawke, J. C. 1973. Lipids. Page 213-263 in G.W. Butler and R.W. Bailey, eds. Chemistry and biochemistry of herbage. Vol. 1, Acadenic Press, New York, NY
  21. Jaster, E. H. 1995. Legume and grass silage preservation. In Post-harvest physiology and preservation of forages, K. J. Moore and M. A. Peterson(Ed.). Special Publication No. 22. Crop Science Society of America, Inc., Madison, WI. pp. 91-115
  22. Kellens, M. J., Goderis, H. L. and Tobback, P. P. 1986. Biohydrogenation of unsaturated fatty acids by a mixed culture of rumen micro-organisms. Biotechnol. Bioeng. 28:1268-1276 https://doi.org/10.1002/bit.260280820
  23. Kemp, P. and Lander, D. J. 1983. The hydrogenation of $\gamma$-linoleic acid by pure cultures of two rumen bacteria. Biochem. J. 216:519-522
  24. Kemp, P. and Lander, D. J. 1984. The hydrogenation of some cis-and trans-octadecenoic adds to stearic acid by a rumen Fusocillus sp. Br. J. Nutr. 52: 165-170 https://doi.org/10.1079/BJN19840083
  25. Kepler, C. R. and Tove, S. B. 1976. Biohydrogenation of unsaturated fatty acids. J. Biol. Chem. 242:5686-5692
  26. Kepler, C. R., Tucker, W. P. and Tove, S. B. 1970. Biohydrogenation of unsaturated fatty acids. Substrate specificity and inhibition of linoleate $\Delta^{12}$-cis, $\Delta^{11}$-trans isomerase from Butyrivibrio fibrisolvens. J. Biol. Chem. 245:3612-3620
  27. Lough, A. K. and Anderson, L. J. 1973. Effect of ensilage on the lipids of pasture grasses. Proc. Nutr. Soc. 32:61-A
  28. McDonald, P., Edwards, R.a. and Greenhalgh, J.F.D. 1988. Lipids. Pages 26-41 in Animal nutrition, 4th ed, Longman Scientific and Technical. New York, NY
  29. MacDonald, P., Henderson, A. R. and Heron, S. J. E. 1991. Losses during ensilage. In The biochemistry of silage, P. McDonald, N. Henderson and S. Heron (Ed.), Chalcombe publications. Aberystwyth, UK. pp. 237-249
  30. Mayne, C. S. and Gordon, F. J. 1986. Effect of harvesting system on nutrient losses during silage making. 2. In silo-losses. Grass Forage Sci. 41: 341-351 https://doi.org/10.1111/j.1365-2494.1986.tb01824.x
  31. Orskov, E. R. and McDonald. I. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. (Camb) 92: 499-503 https://doi.org/10.1017/S0021859600063048
  32. SAS Institute, Inc. 1985. SAS/STAT User's Guide. Version 6.0. SAS Institute, Inc., Cary, NC
  33. Sniffen, C. L., O'Connor, J. D., Van Soest, P. J., Fox, D. G. and Russell, J. B. 1992. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. J. Anim. Sci. 70:3562-3577
  34. Van Nevel, C. J. and Demeyer, D. I. 1996. Effect of pH on biohydrogenation of polyunsaturated fatty acids and their Ca-salts by rumen micro-organisms in vitro. Arch. Anim. Nutr. 49:151-157 https://doi.org/10.1080/17450399609381873
  35. Weenink, R. O. 1961. Acetone-soluble lipids of grasses and other forage plants. I. Galactolipids of red clover (Trifolium pretense) leaves. J. Sci. Food Agric., 12:34-38 https://doi.org/10.1002/jsfa.2740120106
  36. Weenink, R. O. 1964. Lipids of the acetone-insoluble fraction from red clover (Trifolium pretense) leaves. Biochem. J. 93:606-611
  37. Williams, C. M. 2000. Dietary fatty acids and human health. Ann. Zootech. 49: 165-180 https://doi.org/10.1051/animres:2000116