DOI QR코드

DOI QR Code

Activation of RAW 264.7 Macrophage by Digested Bacterial Cell of Pig-derived Lactobacillus Strains

돼지에서 분리된 Lactobacillus Strains의 균체분해산물에 의한 RAW 264.7 Macrophage 활성화

  • Kim, D.W. (National Livestock Research Institute, RDA) ;
  • Cho, S.B. (National Livestock Research Institute, RDA) ;
  • Jeong, H.Y. (National Livestock Research Institute, RDA) ;
  • Moon, H.G. (National Livestock Research Institute, RDA) ;
  • Lee, H.J. (National Livestock Research Institute, RDA) ;
  • HwangBo, J. (National Livestock Research Institute, RDA) ;
  • Chung, W.T. (National Livestock Research Institute, RDA) ;
  • Choi, C.W. (National Livestock Research Institute, RDA) ;
  • Chung, I.B. (National Livestock Research Institute, RDA)
  • Published : 2005.12.31

Abstract

This study was conducted to investigate the effects of hydrolyzed Lactobacillus supplementation with digestive enzymes treatment on the macrophage activation, the induction of nitric oxide(NO), interleukin (IL)-6 and tumor necrosis factor(TNF)-$\alpha$. The RAW 264.7 murine macrophage was exposed to porcine Lactobacillus strains which were digested with both pepsin and pancreatin. The production of NO, TNF-$\alpha$ and IL-6 in the macrophage were strain and dose-dependent, respectively. The induction of NO and cytokines were higher in both 3149 and 3146 strains compared with other Lactobacillus strains. Overall, the level of NO was observed at the lower range between 10 and 150 μg hydrolysates per ml, whereas IL-6 and TNF-$\alpha$ were observed at relatively higher concentration between 50 and 300 μg hydrolysates per ml. Lactobacillus strains which produced a high level of NO also showed a high induction of TNF-$\alpha$ and IL-6. Therefore, the present results suggest that hydrolysates of Lactobacillus strains are related to induction of several macrophage mediators, and then it could be beneficially used to modulate gastrointestinal immune function of the host. Also, the methodogly employed in this study might be useful to investigate the effects of lactic acid bacteria on gastrointestinal immunity.

경구로 섭취된 생균제가 소화관 효소의 작용을 받은 경우 장관면역계의 macrophage에 미치는 영향을 조사하기 위하여 돼지의 장내에서 분리된 lactobacilli를 pepsin과 pancreatin과 같은 소화관 효소로 분해한 균체분해산물에 의해 RAW 264.7 murine macrophage에서 유도되는 NO, TNF-$\alpha$ 및 IL-6의 생성을 측정하였다. Macrophage에서 유도되는 NO, TNF-$\alpha$ 및 IL-6는 균종과 균체분해산물의 양에 따라 달랐다. NO의 생성수준은 10~150 ug/ml의 분해물에서 관찰 되었으나 TNF-$\alpha$와 IL-6는 50~300 ug/ml의 고농도처리에서 나타났다. 6개의 Lactobacillus strains 중에서 3149와 3156 균주는 다른 균주에 비해 TNF-$\alpha$와 IL-6 유도능이 높았다. 또한 소화관 효소에 의해 분해된 lactobacilli의 균체분해산물의 성분이 macrophage 활성 증가와 관련이 있으며 생체내에서 숙주면역계를 조절할 것으로 사료된다. 본 시험에서 사용한 방법은 소화관 면역계에 미치는 유산균의 효과를 규명하는데 유익할 것이다.

Keywords

References

  1. Adams, D. O. and Hamilton, T. A. 1987. Molecular transductional mechanisms by which IFN and other signals regulate macrophage development. lmmunol. Rev. 97:5
  2. Ben-Efraim, S. and Bonta, I. L. 1994. Modulation of antitumor acitivity of macropahges by regulation of eicosanoids and cytokine production. Int. J. Immunol. Pharmacol. 16:397-399
  3. Boisen, S. and Fernandez, J. A. 1995. Prediction of the apparent ileal digestibility of protein and amino acids in feedstuffs and feed mixtures for pigs by in vitro analyses. Animal Feed Science and Technology. 51:29-43 https://doi.org/10.1016/0377-8401(94)00686-4
  4. Clark, P. A. and Martin, J. H. 1994. Selection of bifidobacteria for use as dietary adjuncts in cultured dairy foods: III -Tolerance to simulated bile concentrations of human small intestines. Cult. Dairy Prod. J. 29:18-21
  5. Cross, M. L., Ganner, A., Teilab, D. and Fray, L. M. 2004. Patterns of cytokine induction by grampositive and gram-negative probiotic bacteria. FEMS Immunology and Medical Microbiology. 42: 173-180 https://doi.org/10.1016/j.femsim.2004.04.001
  6. Ding, A. H., Nathan, C. F. and Stuehr, D. J. 1988. Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. J. Immunol. 141:2407- 2412
  7. Dong, W., Azcona-Olivera. J. I., Brooks, K. H., Linz, J. E. and Pestka, J. J. 1994. Elevated gene expression and production of interleukins 2, 4, 5, and 6 during exposure to vomitoxin(deoxynivalenol) and cycloheximide in the EL-4 thymoma. Toxicol. Appl. pharmacol. 127:282-290 https://doi.org/10.1006/taap.1994.1163
  8. Fukushima, Y., Kawata, Y., Mizumachi, K., Kurisaki, J. and Mitsuoka, T. 1999. Effect of bifidobacteria feeding on fecal flora and production of immunoglobulins in lactating mouse. Int. J. Food Microbiology. 46:193-197 https://doi.org/10.1016/S0168-1605(98)00183-4
  9. Fuller, R. 1991. Probiotics in human medicine. Gut. 32:439-442 https://doi.org/10.1136/gut.32.4.439
  10. Gilliland, S. E. 1990. Health and nutritional benefits from lactic acid bacteria. Fed. Eur. Microbial. Rev. 87:175-188
  11. Hatcher, G. E. and Lambrecht, R. S. 1993. Augmentation of macrophage phagocytic activity by cell-free extracts of selected lactic acid-producing bacteria. J. Dairy Sci. 76:2485-2492 https://doi.org/10.3168/jds.S0022-0302(93)77583-9
  12. Kang, K. Y., Park, S. H. and Choe, T. B. 1994. Immunostimulation effect of cell wall components isolated from Lactobacillus plantarum. J. Microbiol. Biotechnol. 4:195-199
  13. Kaur, I. P., Chopra, K. and Saini, A. 2002. Probiotics: potential pharmaceutical applications. European Journal of Pharmaceutical Science. 15: 1-9 https://doi.org/10.1016/S0928-0987(01)00209-3
  14. Kirjavainen, P. V., El-Nezami, H. S., Salminen, S. J., Ahokas, J. T. and Wright, P. F. 1999. The effect of orally administered viable probiotic and dairy lactobacilli on mouse lymphocyte proliferation. FEMS Immunology and Medical Microbiology. 26: 131-135 https://doi.org/10.1111/j.1574-695X.1999.tb01380.x
  15. Kimoto, H., Mizumachi, K., Okamoto, T. and Kurisaki, J. 2004. New Lactococcus strain with immunomodulatory activity: enhancement of Thl-type immune response. Microbiol. Immunol. 48:75-82
  16. Kitazawa, H., Itoh, T., Tomioka, Y., Mizugaki, H. and Yamaguchi, T. 1999. Induction of IFN-$\gamma$ and IL-1$\alpha$ production in macrophages stimulated with phosphopolysaccharide produced by Lactococcus lactis ssp. cremoris. Int. J. Food Microbiology. 31 :99-106
  17. Link-Amster, H., Rochat, F., Saudan, K. Y., Mignot, O. and Aeschlimann, J. M., 1994. Modulation of a specific humoral immune response and changes in intestinal flora mediated through fermented milk intake. FEMS Immunol. Med. Microbiol. 10:55-64 https://doi.org/10.1111/j.1574-695X.1994.tb00011.x
  18. Marin, M. L., Lee, J. h., Murtha, J., Ustunol, Z. and Pestka, J. J. 1997. Differential cytokine production in clonal macrophage and t-cell lines cultured with Bifidobacteria J. Dairy Sci. 80: 2713-2720 https://doi.org/10.3168/jds.S0022-0302(97)76232-5
  19. Marteau, P., Pochart, P., Bouhnik, Y., Zidi, S., Goderel, I. and Rambaud, J. C. 1992. Survival of Lactobacillus acidophilus and Bifidobacterium sp. in the small intestine following ingestion in fermented milk. A rational basis for the use of probiotics in man. Gastroenterol Clin. Biol. 16:25-8
  20. Miettinen. M., Voupio-Varkila, J. and Varkila, K. 1996. Production of human tumor necrosis factor alpha, interleukin-6, and interleukin 10 is induced by lactic aicd bacteria. Infection and Immunity. 64:5403-5405
  21. Nathan, C. 1992. Nitric oxide as a secretory product of mammalian cells. FASEB J. 6:3051-3064
  22. Nathan, C. 1995. Natural resistance and nitric oxide. Cell. 82:873-876 https://doi.org/10.1016/0092-8674(95)90019-5
  23. Nishimura-Uemura, J., Kitazawa, H, Kawai, Y., Itoh, T., Oda, M. and Saito, T. 2003. Functional alteration of murine macrophages stimulated with extracellular polysaccharides from Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1. Food Microbiology. 20:267-273 https://doi.org/10.1016/S0740-0020(02)00177-6
  24. Sakai, T., Hamakawa, M. and Shirai, K. 1996. Protective effects of digested bacterial cell powder on diarrhea in suckling piglets. Agri-Practice. 17: 23-27
  25. Sanders, M. E. 1993. Effect of consumption of lactic cultures on human health. Adv. Food Nutr. Res. 37:67-130 https://doi.org/10.1016/S1043-4526(08)60116-3
  26. SAS. 2000. SAS/STAT User's guide(Release 8.1 ed.). Statistics, SAS Institute Inc., Cary., NC
  27. Sekine, K., Kasashima, T. and Hashimoto, Y. 1994. Comparison of the TNF-$\alpha$ level induced by human-derived Bifidobacterium longum and ratderived Bifidobacterium animalis in mouse peritoneal cells. Bifidobact. Microfl. 13:79-89
  28. Snyder, S. H. and Bredt, D. S. 1992. Biological roles of nitric oxide. Sci. Amer. 266:68-77
  29. Takahashi, T., Oka, T., Iwana, H., Kuwata, T. and Yamamoto, Y. 1993. Immune response of mice to orally administered lactic acid bacteria. Biosci. Biotech. Biochem. 57:1557-1560 https://doi.org/10.1271/bbb.57.1557
  30. Tejada-Simon, M. V. and Pestka, J. J. 1999. Proinflammatory Cytokine and nitric oxide induction in murine macrophages by cell wall and cytoplasmic extracts of lactic acid bacteria. J. Food Prot. 62:1435-1444
  31. Urban, J. L., Shepard, H. M., Rothstein, J. L., Sugarman, B. J. and Schreiber, H. 1986. Tumor necrosis factor: a potent effector molecule for tumor cell killing by activated macrophages. Proc. Natl. Acad. Sci. USA. 83:5233-5237 https://doi.org/10.1073/pnas.83.14.5233
  32. 송미경, 우석규, 장정순, 김중학, 김화영, 홍성길, 이병욱, 빅미현, 정건섭. 2003. 한국인으로부터 분리한 Pediococcus pentosaceus EROM101의 면역증강 및 항암활성. Kor. J. Microbiol. Biotechnol. 31: 355-361