A Compact 3-Layer EBG Structure with Square Ring Stripline

사각 링 스트립선로를 결합시킨 소형 3층 EBG 구조

  • An Sung-Nam (School of Electrical and Computer Engineering, Ajou University) ;
  • Shin Dong-Gu (Department of Radio Communications Engineering, Korea University) ;
  • Kim Sang-ln (School of Electrical and Computer Engineering, Ajou University) ;
  • Choo Ho-Sung (School of Electronic and Electrical Engineering, Hongik University) ;
  • Kim Moon-Il (Department of Radio Communications Engineering, Korea University) ;
  • Park Ikmo (School of Electrical and Computer Engineering, Ajou University) ;
  • Lim H. (School of Electrical and Computer Engineering, Ajou University)
  • 안성남 (아주대학교 전자공학부) ;
  • 신동구 (고려대학교 전파통신공학과) ;
  • 김상인 (아주대학교 전자공학부) ;
  • 추호성 (홍익대학교 전기전자공학부) ;
  • 김문일 (고려대학교 전파통신공학과) ;
  • 박익모 (아주대학교 전자공학부) ;
  • 임한조 (아주대학교 전자공학부)
  • Published : 2005.03.01

Abstract

In this paper we propose the compact three-layer EBG structure. The unit cell of the proposed EBG structure is composed of a square patch in the upper layer and a square ring stripline in the lower layer that are connected to the ground plane through conducting vias. Reflection phase analysis method and tangential transmission method were considered to accomplish effective EM simulation and measurement. EM simulation results indicate that bandgap characteristics of the EBG structure using both methods is nearly identical. Parametric studies have been performed with the EM simulator to analyze the properties of the EBG structure by investigating the phase shift of the normally incident plane wave, and the transmission measurements between simple monopole antennas positioned near the EBGstructure have been done. The operating fiefuency bandgap of the proposed EBG structure is about 34 $\%$ lower than the conventional EBG structure with the same size. Measured results show bandgap from 0.930 GHz to 0.945 GHz.

본 논문에서는 사각 패치와 사각 링 스트립선로가 전자기적으로 결합된 3층 구조의 소형화된 EBG구조를 제안하였다. 제안한 EBG 구조는 상층의 사각 패치와 하층의 사각 링 스트립선로가 비아에 의해 접지면에 연결되었다. 반사위상 EM시뮬레이션을 통해 EBG구조 표면에서의 반사위상을 계산하여 EBG구조의 밴드갭 특성을 연구하였고, 반사위상에서 나타나는 밴드갭과 투과계수(S$_{21}$)에서 나타나는 밴드갭이 일치하는 것을 EM 시뮬레이션을 통해 확인하였으며, 측정은 제작이 용이한 프로브 안테나를 사용하여 EBG 구조의 표면을 진행하는 표면파의 투과계수를 측정하였다. 제안한 EBG구조는 동일한 크기의 기존 3층 구조에 비하여 밴드갭이 나타나는 주파수가 약 34 $\%$ 감소되었다. 측정한 결과 제안한 구조는 0.930 GHz에서 0.945 GHz까지의 밴드갭을 갖는다.

Keywords

References

  1. D. R. Fredkin, A. Ron, 'Effectively left-handed (negative index) composite material', Appl. Phys. Lett., vol. 81, no. 10, pp. 1753-1755, Sep. 2002 https://doi.org/10.1063/1.1505119
  2. A. Alu, N. Engheta, 'Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling and transparency', IEEE Trans. Antennas Propagat., vol. 51, no. 10, pp. 2558-2571, Oct. 2003 https://doi.org/10.1109/TAP.2003.817553
  3. R. W. Ziolkowski, E. Heyman, 'Wave propagation in media having negative permittivity and permeability', Phys. Rev. E., vol. 64, no. 056625, pp. 1-15, Oct. 2001
  4. R. A. Shelby, D. R Smith, and S. Schultz, 'Experimental verification of a negative index of refraction', Sci., vol. 292, pp. 77-79, Apr. 2001 https://doi.org/10.1126/science.1058847
  5. C. Caloz, C. -CO Chang, and T. Itoh, 'Full-wave verification of the fundamental properties of left-handed materials in waveguide configurations', J. Appl. Phys., vol. 90, no. 11, pp. 5483-5486, Dec. 2001 https://doi.org/10.1063/1.1408261
  6. See for examples, IEEE Trans. Microwave Theory Tech., vol. 47, no. 11, pp. 2059-2150, Nov. 1999 https://doi.org/10.1109/22.798001
  7. D. Sievenpiper, 'High-impedance electromagnetic surfaces', Ph.D. dissertation, Dept. Elect. Eng., Univ. California at Los Angeles, Los Angeles, CA, 1999
  8. D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, 'High-impedance electromagnetic surfaces with a forbidden frequency band', IEEE Trans. Microwave Theory Tech., vol. 47, no. 11, pp. 2059-2074, Nov. 1999 https://doi.org/10.1109/22.798001
  9. R. F. J. Broas, D. Sievenpiper, and E. Yablonovitch, 'A high-impedance ground plane applied to a cellphone handset geometry', IEEE Trans. Microwave Theory Tech., vol. 49, no. 7, pp. 1262-1265, Jul. 2001 https://doi.org/10.1109/22.932245
  10. M. Rahman, M. A. Stuchly, 'Circularly polarised patch antenna with periodic structure', lEE Proc. Microwave Antennas Propagat., vol. 149, no. 3, pp. 141-146, Jun. 2002
  11. D. Pavlickovski, R. B. Waterhouse, 'Shorted microstrip antenna on a photonic bandgap substrate', IEEE Trans. Antennas Propagat., vol. 51, no. 9, pp. 2472-2475, Sep. 2003 https://doi.org/10.1109/TAP.2003.816315
  12. F. Yang, Y. Rahmat-Samii, csurface: a low profiled design for CP applications', IEEE AP-S Int. Symp., vol. 3, pp. 372-375, Jul. 2001
  13. H. Nakano, M. Ikeda, K. Hitosugi, J. Yamauchi, and K. Hirose, 'A spiral antenna backed by an electromagnetic band-gap material', IEEE AP-S Int. Symp., vol. 4, pp. 482-485, Jun. 2003
  14. M. Rahman, M. A. Stuchly, 'Modeling and application of 2D photonic band gap structures', IEEE Aerospace Conf. Proc., vol. 2, pp. 2/893-2/898, Mar. 2001
  15. F. Yang, C. Kee, and Y. Rahmat-Samii, 'Step-like structure and EBG structure to improve the performance of patch antennas on high dielectric substrate', IEEE AP-S Int. Symp., vol. 2, pp. 482-485, Jul. 2001