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CAUCHY COMPLETION OF CSASZAR FRAMES

SE Hwa CHUNG

ABsTrRACT. We introduce a concept of Cauchy complete Csdszar
frames and construct Cauchy completions of Csaszdr frames using
strict extensions of frames and show that the Cauchy completion
gives rise to a coreflection in the categories CsFrm and UCskFrm.

1. Introduction and preliminaries

In order to study topological, proximal and uniform structures in a
single setting, Csédszdr [7] has introduced the concept of syntopogenous
structures on a set. He defined the concept of complete syntopogenous
spaces and constructed the completions of syntopogenous spaces using
the Cauchy filters. For the concept of the Cauchy filters, he introduced
the join-irreducible set in the spaces. Moreover, he also showed that
proximity structures occupy an intermediate position between topolo-
gies and uniformities to the effect that the topology deduced from a
uniformity is really constructed in two steps: first deduced from a uni-
formity a proximity structure, then from this topology in guestion. In
[6], the author proved the following:

(1) The category of topological spaces and continuous maps and the
category of perfect topogenous spaces and continuous maps are isomor-
phic.

(2) The category of proximity spaces and proximal maps and the
category of symmetrical topogenous spaces and continuous maps are
isomorphic.

Received November 12, 2003.

2000 Mathematics Subject Classification: 06D99, 18 A40, 54A 15, 541D35.

Key words and phrases: frame, frame homomorphism, Csdszdr frame, Cauchy
complete Csdszar frame, Cauchy completion, uniform Csédszar frame, Cauchy homo-
morphism, uniform homomorphism, regular Cauchy filter.

This work was supported by Kroea Research Foundation Grant (KRF-2002-015-
CP0032).



292 Se Hwa Chung

(3) The category of uniform spaces and uniformly continuous maps
and the category of symmetrical biperfect syntopogenous spaces and
continuous maps are isomorphic.

The study of structured frames started with Isbell [10], where unifor-
mities on frames were introduced as exact translation into frame terms
of Tukey’s approach([14]) to uniform spaces via covers. Nearness frames,
which is uniform frames without the star-refinement condition, was in-
troduced recently by Banaschwiski and Pultr [5], and they introduced
the concept of Cauchy complete nearness frames and constructed the
completions of nearness frames which furnish coreflections in the cate-
gory of strong nearness frames and uniform homomorphisms(see [3-5]).
For the Cauchy complete nearness frames, they introduced the concept
of regular Cauchy filters via covers. Hong and Kim [9] showed more
recently that every nearness frame has the Cauchy completions, which
furnish coreflections in the category of nearness frames and Cauchy ho-
momorphisms.

~The purpose of this paper is twofold: One of them is to introduce the
frame counterpart of the syntopogenous space. The other is to define the
Cauchy complete Csaszar frames and then construct the Cauchy com-
pletions of Csdszar frames, that is, the frame counterpart of the Csdszar
completion of syntopogenous spaces([7]). In addition, we present the
following two results:

(1) The category CCCsFrm of Cauchy complete Csészar frames is
coreflective in the category CsFrm of Csdszar frames and Cauchy homo-
morphisms.

(2) The category CCUCsFrm of Cauchy complete uniform Csészar
frames is coreflective in the category UCsFrm of uniform Csészar frames
and uniform homomorphisms.

Now we briefly recall some of the basic concepts of frame theory and
introduce notation and terminology that is consistent throughout this
paper. For the general background of frame theory, we refer to [11] and
for the category theory, we refer to [1].

DEFINITION 1.0.1. A frame is a complete lattice L in which
x/\\/xi = \/(w/\:cz)
I I
for any z € L and family {z;};cr contained L.
In a frame L, e (0, resp.) denotes the top (bottom, resp.) of L.

DEFINITION 1.0.2. A subset A of a frame L is said to be a cover of
Lif\VA=e.
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DEFINITION 1.0.3. A frame L is said to be regular if

(L:\/{:L’:CI?*\/CLZB}

for all @ € L, where z* is the psedocomplement of x in L, given by
r*=\V{yeLlL:xANy=0}

*

DEFINITION 1.0.4. (1) A frame homomorphism is amap h: M — L
between frames preserving finite meets (including the top) and arbitrary
joins (including the bottom).

(2) A frame homomorphism h: M — L is said to be dense if h(z) =
() implics z = 0.

Because of join preservation, each frame homomorphism A : M — L
has a right Galois adjoint A, that is, a monotone map h.: L — Al such
that

h(x) <y if and only if z < h.(y).

PROPOSITION 1.0.5. Every dense frame homomorphism between reg-
ular frames is a monomorphism.

ProprosiTION 1.0.6. Let h: Al — L be a frame homomorphism.
(1) x < ho(h(z)) for all x € L.

(2) If h is onto then hh, = id and h(z) A y* = 0 implies y* < h(z*).
(3) If h is dense onto then h,(z*) = (h.(x))* for all z € L.

DEFINITION 1.0.7. [3] A strict extension of L is an onto dense frame
homomorphism h: Al — L satisfying the following

M={\/A: ACh(L)}.

2. Csaszar frames

In this section, we introduce the concept of Csdszar orders on frames
and that of the Csdszdr frames and then state some properties of the
Cséaszar frames in the form applicable to the situations arising later.

2.1. Csaszar orders

In this subsection, we introduce the concept of Csaszar orders on
frames and properties of the Csdszar orders.

DEFINITION 2.1.1. A Csdszdr order < on a frame L is a binary
relation on L satisfying the following properties:
(CO;) 0«0 and e<e,
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(CO9) x <y implies z < y
(CO3) z < a<1b<yimplies z < y.

REMARK 2.1.2. Let L be a frame and S = {<; : ¢ € I} a family of
Csészar orders on L. Then <g is a Csadszar order on L, where <1g =
U{<«; : i € I}.

DEFINITION 2.1.3. Let L be a frame and S a family of Csaszar orders
on L. Then § is said to be admissible if for any a € L,

a:\/{meL:mQSa}

DEFINITION 2.1.4. A symmetric Csdszdr order <1 on a frame L is a
Csaszar order satisfying the following property:
(ST) a < b implies b* < a*.

The following two propositions are immediate from Proposition 0.0.6.

ProposITION 2.1.5. Let h: M — L be an onto frame homomorphism
and < a Csdszdr order on L. Define a binary relation h.(<) on M as
follows: zh.(<)y if and only if there are points a and b in L such that

h(z) < a<band h.(b) <y.

Then (1) h.(<) is a Csdszar order on M,

(2) if h is dense and < is a symmetric Csdszar order on L then h, (<)
is a symmetric Csaszar order on M.

(3) if <1 and <3 are Csdszar orders on L and <11 C <y then h,(<;) C
h*(<]2).

(4) x <y if and only if he(z)hs(<)h(y).

PropPOSITION 2.1.6. Let h: M — L be a frame homomorphism and
< a Csdszdr order on M. Define a binary relation h(<1) on L as follows:
zh(<)y if and only if there are points a and b in M such that

z < h(a),a<tb and h(b) < y.

Then (1) h(<) is a Csdszar order on L.

(2) If h is onto and < is a symmetric Csdszar order on L then h(<1)
is a symmetric Csaszar order on L.

(3) If <1 and <z are Csdszdr orders on M and <) C <3 then h(<;) C
h(<12).

(4) If x <y then h(z)h(<)h(y).

(5) If h is onto then < = h(h.(<)), where < is a Csdszar order on L.

REMARK 2.1.7. For any onto frame homomorphism h: M — L and
any family S of Csédszar orders on L, h.(<s) = U{h.(<): < € S}.
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DEFINITION 2.1.8. Let L be a frame and < a Csédszar order on a
frame L. An element a € L is said to be <-small if x <y implies
a<z*ora<y.

Denote by B(<1) the set of <-small elements and B(<) is called the
<-small set.

REMARK 2.1.9. Let L be a frame and <, <, Csdszar orders on L.
Then one has the following:

(1) B(<1) is a down set, that is, if z € B(<1) and y < z, then y € B(<).

(2) < C <, implies B(<,) € B(<).

Let L be a frame and A, B C L. Then A is said to refine B if for any
a € A there exists b € B with a < b. In this case, we write A < B.

PROPOSITION 2.1.10. Let h: M — L be a frame homomorphism and
< a Csdszar order on L. Then

(1) if h is dense, then h.(B(<)) C B(h«(<)),

(2) if h is onto, then B(h«(<)) < hs(B(<)),

(3) if h is onto dense, then h(B(h«(<))) = B().

Proof. (1) Take any a € B(<) and suppose zh,(<)y. Then there exist
u,v € L such that h{z) < u < v and h.(v) < y. Suppose h.(a) Az # 0.
Then a A h(z) # 0, for h is dense and h(h.(a)) < a. Hence a A u # 0,
for h(z) < u. Since a € B(<), a < v and hy(a) < y. Therefore
h.(a) € B(h.(<)). In all h(B(<)) C B(h«(<)). This completes the
proof.

(2) Take any a € B(h4(<)) and suppose z<y. Then h.(z)h.(<Q)h.(y).
Suppose h{a) Az # 0. Then a A hy(z) # 0 for h is onto. Since a €
B(h.(<)), a < h.(y) and hence h(a) < y. Therefore h(a) € B(«) and
then a < h.(h(a)) € h(B(<)). In all B(h«(<))) < h«(B(<)). This
completes the proof.

(3) It is immediate from (2) and (3). O

<
<

2.2. The category of Csaszar frames

In this subsection, we introduce two categories: The category Cs-
Frm of Csaszar frames and the category CCCsFrm of Cauchy complete
Csaszar frames.

Now we recall syntopogenous spaces introduced by Csaszar. In a
syntopogenous space (X,S), the syntopogenous structure S is deter-
mined by topogenous orders on P(X). Such an order is a sublattice
of P(X) x P(X). The condition is required to deduce a topology on X
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from the syntopogenous structure S(see [7]). But frame itself is a (point-
less) topology and the right adjoint of a frame homomorphism does not
preserve joins. This motivates the following definition.

DEFINITION 2.2.1. Let L be a frame and £ a family of Csdszar orders
on L. Then £ is said to be a Csdszdr structure on L if it satisfies the
following;:

(1) L is up-directed (relative to set inclusion)

(2) < is a meet-sublattice of L x L, that is, z <.y, z imply z <1 yAz.

(3) £ is admissible.

In this case, the pair (L, L) is called a Csdszdr frame.

REMARK 2.2.2. (1) It is easy to see that for any frame L, {<} is a
Csészar structure on the frame L.

(2) Every nearness structure A/ on a frame L admits Csdszdr structure
Ly on L:

Ly ={<a:A€N},

where z <4y if and only if \/{a € A: 2z Aa#0} <y.

(3) If L is a regular frame, then (L, {<}) is a Csdszér structure where
x<yifand only if x* Vy =e.

(4) If L is a completely regular frame then (L, {<?}) is a Csdszdr
structure where z <2 y if and only if z < z < y for some z € L.

DEFINITION 2.2.3. Csészar frame (L, £) is said to be regular if <z C<.
In what follows, we assume that every Csdszar frame is regular.

REMARK 2.2.4. (1) It is clear that if (L, £) is a Csészar frame then
L is a regular frame.

(2) It is immediate from the above definition that {<} is the largest
regular Csészér structure on the frame.

Cauchy filters play an important role in syntopogenous spaces inas-
much as such notions as convergence and completeness can be charac-
terized in terms of Cauchy filters. We now define their counterparts,
namely regular Cauchy filters, in a Csaszar frame using <1-small sets.

DEFINITION 2.2.5. Let (L, L) be a Csdszar frame and F a filter on
L. Then F is said to be :

(1) a Cauchy filter if for any <1 € £, F N B(<) # 0.

(2) a regular filter if for any a € F, there is b € F with b <. a.

(3) a completely prime filter if \/ a; € F(i € I) implies a; € F for
some ¢ € 1.
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Using regular Cauchy filters, we now define a Cauchy homomorphism
between Csédszar frames.

DEFINITION 2.2.6. Let (L,L£) and (M, M) be Csdszdr frames. A
frame homomorphism h: M — L is said to be a Cauchy homomorphism
if for any regular Cauchy filter F on (L, £), there exists a regular Cauchy
filter G on (M, M) with G C h™L(F).

It is easy to see that every identity map is a Cauchy homomorphism
and the composition of two Cauchy homomorphisms is also a Cauchy
homomorphism.

CsFrm denotes the category of Csdszar frames and Cauchy homo-
morphisms.

We now recall that a filter F' on a frame L is said to be convergent if
for any cover A of L, FN A # 0( [8]) and that a regular filter on a frame
is convergent if and only if it is completely prime filter on the frame,

and every regular filter on a Csédszér frame (L, L) is a regular filter on
L.

DEFINITION 2.2.7. A Csészér frame is said to be Cauchy complete if
every regular Cauchy filter on the Csaszar frame is convergent.

CCCsFrm denotes the category of Cauchy complete Csdszdr frames
and Cauchy homomorphisms.

REMARK 2.2.8. The category CCCsFrm is a full subcategory of the
category CsFrm.

REMARK 2.2.9. Note that a Csészér frame is Cauchy complete if and
only if every regular Cauchy filter on the Csdszar frame is a completely
prime filter; therefore a Csdszdr frame is Cauchy complete if and only if
regular Cauchy filters on the Csdszar frame are precisely Cauchy com-
pletely prime filters.

3. Cauchy completion of Csaszar frames

In this section we construct the Cauchy completion of Csaszar frames
and show that the Cauchy completion gives rise to a coreflection in the
categories CsFrm. We introduce the concept of uniform Csészar frames
and show that the Cauchy completion gives rise to a coreflection in the
categories UCsFrm.
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3.1. Cauchy completion of Csaszar frames

Using strict extension of frames, we construct the Cauchy completion
of Csészar frames and then show that the Cauchy completion gives rise
to a coreflection in the category CsFrm of Csdszar frames and Cauchy
homomorphisms. .

Banaschewski and Hong [3] introduce strict extensions of frames. The
following summary is extracted from the paper:

For a set X of filters on a frame L, let P(X) denote the power set
lattice of X and L x P(X) the product frame L and P(X). Then
SxL ={(z,Y.,) : © € L} is a subframe of L x P(X), where > = {F €
X :xz € F}. Let s: sxL — L be the restriction of the first projection
and the right adjoint s* of s is given by s*(z) = (z,)_,)(z € L). Since
s* preserves meets, s*(L) is closed under finite meets and hence the
subframe cL of sxL generated by s*(L) is given by {(V A4,>_4) : A C
L}.

The restriction ¢7,: ¢cL. — L of s is called the strict extension of L
associated with X. In what follows, X denotes the set of regular Cauchy
filters on a frame L.

LEMMA 3.1.1. Let h: M — L be an onto frame homomorphism and
< a meet-sublattice of L x L. Then h.(<) is a meet-sublattice of M x M.

Proof. Suppose ah.(<)b,c. Then there exist x1,z2,y1,y2 € L such
that

h(a) <21 <Y1, ha(y1) < b
and
h{a) < zo Qy2, ha(y2) < c
By the assumption,

h{a) < x1 Axe <y A Y2, hely1 Ay2) <bAec.
Hence ah.(<)b A ¢. This completes the proof. O

For a Csaszéar frame (L, L), let £* = {c1,(<) : < € L}. Using this
notion and Proposition 1.1.5, we have the following:

PROPOSITION 3.1.2. For any Csdszér frame (L, L),
(cL, L*) is a Cséaszar frame.

Proof. By Proposition 1.1.5, each of £* is a Csaszar order on cL
and L£* is directed. Firstly, we show that L£* is admissible, that is,

(VA D) =VIVB,2p): (VB,2 ) <cx (VA2 4)} for each A C
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L. Since (V A,>-4) = V{ci.(a) : a € A} and b <z a implies ¢, (b) <-
cr..(a), it is enough to show that ¢z, (a) = V{er,(b) : b <z a} for each
a € L. Clearly, U{>_, :b<ca} C > ,. Take any F € }_,. Then there
exists b € F' with b <z a for F is regular; hence F € U{}, : b<ga}. By
the above lemma, <g- is a meet-sublattice of ¢L x ¢L.. Now we show that
(L, L) is regular. Suppose (a ZA g+ (0,) ). Then thereexist z,y € L
such that a < z<eyand ¢, (b, ZB Since (L, £) is regular, a<icy
implies ¢* V y = e. Since F is a Cauchy filter L, a* € F or y € F and
hence ¢r,(a*) Ver, (y) = (e, X). Thus (a,Y_4)* V (b, p) = (e, X) for
er, (@*) < (a, )’ 4)*. This completes the proof O

ProrositioN 3.1.3. Let (L, L) be a Csdszdr frame. Then one has
the following:

(1) cr: (eL, L*) — (L, L) is a Cauchy homomorphism.
(2) for any regular Cauchy filter G on (cL, L*), cr (G) is also a regular
Cauchy filter on (L, L).

Proof. (1) Take any regular Cauchy filter F on (L,L) and let G =
{a € ¢L:b < afor some b € ¢y, (F)}. Since ¢y, is onto and ¢j,, preserves
finite meets, G is a filter on (cL, £*) and G C ¢ ~}(F), for ¢, is onto.
It remains to show that G is a regular Cauchy filter on (cL, L*). We
firstly show that G is a Cauchy filter on (cL,L£*). Take any < € L*.
Then there exists <7, € L with < = ¢;,(<). Since F is a Cauchy
filter on (L, L), B(<,) N F # § and hence ¢y, (B(<)) Nep, (F) # 0.
By Proposition 1.1.10, B(cy,, (<)) Ner, (F) # 0. Since < = ¢y, (<11),
B(«)ner, (F) # 0. Thus G is a cauchy filter on (¢L, £L*). Now we show
that G is a regular filter on (¢L, £*). Take any a € G. Then there exists
be F with ¢, (b) < a. Since F is a regular filter on (L, £), there exists
d ¢ F with d <17, b. By Proposition 1.1.5, ¢z, (d)cg, (<z)er,, (b) and hence
cr,(d) Qg a. Thus G is a regular filter on (cL, £*). This completes the
proof.

(2) We first note that since cL is dense, ¢ (G) is a filter on L. It
remains to show that ¢z (G) is a regular Cauchy filter on (L, L). We
firstly show that ¢, (G) is a Cauchy filter on (L, L). Take any < € L.
Since G is a Cauchy filter on (¢L, L*), G N B(cy, (<)) # 0. Since ¢y, is
onto dense, ¢ (G) N B(<) # 0. Thus ¢, (G) is a Cauchy filter on (L, £).
Now we show that ¢/, (G) is a regular Cauchy filter on (L, £). Take any
a € G. Then there exists b € G and cy,, (<) € L* with bey, (<)a for G
is regular. Since ¢y, is onto, ¢r(b) <¢- cr(a) and ¢,(b) € cx(G). Thus
¢.(G) is a regular filter on (L, £). This completes the proof. O
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Using the above, we construct the Cauchy completion of a Csaszar
frame.

THEOREM 3.1.4. The Csédszar frame (cL, £*) is Cauchy complete.

Proof. Take any regular Cauchy filter F' on (cL,L*) and take any
basic cover S of ¢L, i.e., S = {(a,>_,) : a € A} for some A C L. By
the above proposition, ¢y (F) is a regular Cauchy filter on (L, £). Since
VS =NA4>,) =(e,X), >4 = X and hence ¢ (F) € > 4. Pick
a € c,(F)N A # 0. Then there exists b € F with b < ¢r,(a); hence
cr.(a) = (a,>,) € FNS. Thus F is convergent. This completes the
proof. O

DerFmNITION 3.1.5. For any Csészér frame (L, L), cr: (¢L,L*) —
(L, L) or simply (cL, L*) is called the Cauchy completion of (L, L).

REMARK 3.1.6. It is worthwhile to note that cr: (cL,L*) — (L, L)
is an isomorphism if and only if every filter in X is Cauchy completely
prime filter on L. Using this note, we know that a Csaszar frame (L, £)
is Cauchy complete if and only if cL = {(a,)>_,) : a € L}.

Using the above, we now have the main theorem in this subsection:

THEOREM 3.1.7. The category CCCsErm is coreflective in the cate-
gory CsFrm.

Proof. Take any Csdszdr frame (L, £). By Theorem 2.1.4, (cL, £*) is
a Cauchy complete Csdszar frame and by Proposition 2.1.3, the Cauchy
completion cr: (cL,L*) — (L,L) is a Cauchy homomorphism. Take
any Cauchy complete Csészar frame (M, M) and Cauchy homomor-
phism h: (M, M) — (L,L). We define h: cM — cL by h(a,.,) =
(h(a),U{2hp) © b Ima}) for all A C M. Then h is a map with
hocpy = cp oh. Take any regular Cauchy filter H on (cL,L*). By
Proposition 2.1.3, ¢, (H) is a regular Cauchy filter on (L, £). Since h
is a Cauchy homomorphism, there exists a regular Cauchy filter G on
(M, M) with G C h™(c.(H)). Now we show that cp, (G) € ™1 (H).
Take any cpr,(9) € cpm,(G) then g € G. Since G is regular, there
exists 4 € G with u <a¢ g. Then there exists (a,).,) € H with
h(u) = cr(a,>4) = a, for G C h™Y(e(H). Then cr,(a) = cr, (h(u)) <

h(cr,9)). Indeed, take any F' € } ). Since u <a g and h(u) € F,
by the definition of h, F € U{}:h(u) :u<laq gy Thus ¢, (h(u)) <

h(cr,(g)). Since (a,_4) € H and H is a upset, h(cr,(9)) € H and then
ca. (G) C h7Y(H). Let k = hocyy,. Clearly k preserves finite meets,
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for <iaq is a meet-sublattice of M x M. In order to show that k pre-
serves arbitrary joins, it is enough to show that for any subset A C M,
U{> ) T <m VA = U{3 ) +  <ama for some a € A}. Clearly
U{X (e ¢ ® <ma for some a € A} C U{D ) : ¢ <m V A} In order
to show that the reverse inclusion, take any F' € U{> .,y : = <Im V A}
Then F is a regular Cauchy filter on (L, L) and h(z) € F for some
x <m VA, Since h is a Cauchy homomorphism, there exists a reg-
ular Cauchy filter G on (M, M) with G C h~Y(F). Since (M, M)
is a Cauchy complete Csdszar frame, G is a completely prime filter
and {zr*} U A is a cover of M; hence GN A # @, for h(z) € F. Pick
a € GNA. Since G is regular,there exists y € G with y <1 a. Hence
Fe Uy, <\ma for some a € A} for h(y) € Fand a € A. Thus k
is a frame homomorphism. In all k is a Cauchy homomorphism. Since
¢y, is a monomorphism, by Proposition 0.0.5 and Remark 1.2.3, such a k
is unique. Thus cp: (cL,L*) — (L, L) is the CCCsFrm-coreflection for
(L.L) in CsFrm. This completes the proof. ]

3.2. Cauchy completion of uniform Csészar frames

In this subsection, we introduce the concept of uniform Csészar frames
and show that the Cauchy completion gives rise to a coreflection in the
categories UCsFrm.

DEFINITION 3.2.1. A Csdszar frame (L, L) is said to be a uniform
Csdszdr frame if each of £ is symmetric and for any < € £, there exists
<p € L with < C <2, i.e., a < b implies a <o d <o b for some d € L.

The frame in the above definition is regarded as the topology deduced
from a uniformity (= symmetrical biperfect syntopogenous structure) on
a set.

The following is immediate from Propositions 1.1.5 and 2.1.2.

THEOREM 3.2.2. For any uniform Csédszar frame (L, L), (cL,L*) is a
Cauchy complete uniform Csdszdr frame.

DEFINITION 3.2.3. Let (L, £) and (M, M) be uniform Csaszar frames.
A frame homomorphism h: M — L is said to be a uniform homomor-
phism if for any <13y € M there exists <1, € £ with B(<1,) < h(B(<ar)).

It is easy to see that every identity frame homomorphism is a uniform
homomorphism and the composition of two uniform homomorphisms is
a uniform homomorphism.

UCsFrm denotes the category of uniform Csédszar frames and uniform
homomorphisms.



302 Se Hwa Chung

CCUCsFrm denotes the category of Cauchy complete uniform Csészar
frames and uniform homomorphisms.

REMARK 3.2.4. The category CCUCsFrm is a full subcategory of the
category UCsFrm.

Let (L, L) be a Csdszar frame and A, B C L. Then A is said to <-
refine B if for any a € A there exists b € B with a <b. In this case, we
write A < B.

LEMMA 3.2.5. Let (L, L) be a uniform Csédszdr frame. Then for any
<1 € L, there exists <o, € L with B(<,) <o B().

Proof. Take any < € £ and let <, <, € £ such that < C <? and
<1 € <?.Take any ¢ € B(<,). Suppose z € L with z <, z and let
=Ny €L:x< 2<y} Then z <, z°, for < is transitive. Now we
show that z° € B(<). Suppose a <1b and 2° A a # 0. Since <; C <2,
there exist a1, as,a3 € L with a <, a1 <o ag <o a3 <o b. Then z A ag # 0,
else z < a3 <, af <o a*, for <, is symmetric and hence z° < a*, which is
contradiction to the fact that 2° A a # 0. Since z € B(<,), £ < ag <o b
and so z° < b. Thus z° € B(<1) and so B(<,) <o B(<1). This completes
the proof. O

For a filter F on a uniform Csészdr frame (L, £), F’° denotes the filter
{r € L:a<gz for some a € F}. Using the above lemma, we have the
following;:

PRroOPOSITION 3.2.6. Let (L, L) be a uniform Csdszar frame and F a
Cauchy filter on (L, L). Then F° is a regular Cauchy filter on (L, L).

Proof. Clearly F° is a regular filter. In order to show that F° is
a Cauchy filter, take any < € £ and let <° € £ with B(<,) <o B().
Since F is a Cauchy filter on (L, £), FNB(<°) # . Pick x € FNB(<°).
Since z € B(<°), there exists y € B(«) with z <° y; hence y € F for
xz € F. Thus F° is a Cauchy filter. This completes the proof. O

LEMMA 3.2.7. Every uniform homomorphism h: (M, M) — (L, L)
between uniform frames is a Cauchy homomorphism.

Proof. Take any regular Cauchy filter F on (L, L) and <p € M.
Since h is uniform, there exists <y, € £ with B(<) < h(B(<a)). Since
F is a Cauchy filter, FNB(<y) # 0 and hence FNh(B(<pr)) # 0. Thus
h~Y(FYNB(<y) # 0 and so h~1(F) is a Cauchy filter on (M, M). Since
(M, M) is uniform, by Proposition 2.2.5, there exists a regular Cauchy
filter G on (M, M) with G C h=1(F). O
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Using the above, we now have the main theorem in this subsection:

THEOREM 3.2.8. The category CCUCsFrm is coreflective in the cat-
egory UCsFrm.

Proof. Take any uniform Csédszar frame (L, £) and let ¢,: (cL,L*) —
(L,L) be the Cauchy completion of (L, L). By Theorem 2.2.3, (cL, L*)
is a Cauchy complete uniform Csészédr frame and by Proposition 1.1.10,
¢y, is uniform, for ¢y, is onto dense. Take any Cauchy complete uniform
Csészar frame (M, M) and any uniform homomorphism h: (M, M) —
(L, L). Since h is a uniform homomorphism, by the above lemma, A is a
Cauchy homomorphism and hence by Theorem 2.1.7, there is a unique
Cauchy homomorphism h: ¢M — ¢L with ¢, o h = h. Now we show
that h is uniform. Take any c%,(<) € ¢i;(M) and then < € M. Since
(M, M) is uniform, there exists <, € M with B(<,) <o B(<). Since
h is uniform, there exists <1y € £ with B(<1;) < h(B(<,)). Now we
show that cr, (B(<L)) < h(ch;(B(<))). Take any c}(u) € ¢ (B(<L))
and then u € B(<p). Then there exists v € B(<,) with u < h(v).
Since v € B(<,), there exists z € B(<) with v <aq z. Take any F €
> . Since v <p z and u < h(v), F € U{3 ;) : # <m z} and hence
¢’ (u) < h(c};(z)) and hence c} (B(<)) < h(c};(B(<))). Since cpr and
¢, are onto dense, by Proposition 1.1.10, B(c} (<)) < h(B(c};(<))).
Thus c¢p,: (cL,L*) — (L, L) is the CCUCsFrm-coreflection for (L, £) in
UCsFrm. This completes the proof. ]
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