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CLASS FIELDS FROM THE FUNDAMENTAL
THOMPSON SERIES OF LEVEL N = o(g)

So Young CHol AND JA KyYUuNG Koo

ABSTRACT. Thompson series is a Hauptmodul for a genus zero
group which lies between I'o(N) and its normalizer in PSLy(R)
([1]). We construct explicit ring class fields over an imaginary
quadratic fleld K from the Thompson series Ty(a) (Theorem 4),
which would be an extension of [3], Theorem 3.7.5 (2) by using
the Shimura theory and the standard results of complex multiplica-
tion. Also we construct various class fields over K, over a CM-field
K((~x + Cy'), and over a field K((y). Furthermore, we find an
explicit formula for the conjugates of Ty () to calculate its minimal
polynomial where a(€ $) is the quotient of a basis of an integral
ideal in K.

1. Introduction

The main purpose of this paper is to study the class fields generated
by singular values of Thompson series T, at imaginary quadratic argu-
ments in the complex upper half plane §), over K, CM-field K ({n + C;II)
and K((n). To this end, we recall the classical results on singular mod-
uli of the elliptic modular function j for SLy(Z) evaluated at imaginary
quadratic arguments (2], [5], [9], [11]). Let K be an imaginary quadratic
field over Q of discriminant dg and O be an order of K of conductor
f, discriminant f2dg and class number h(O). Let o € H N O be an
imaginary quadratic argument. Then a singular modulus j(«) generates
the ring class field L of O (the Hilbert class field if O is the maximal
order of K).

Helling showed in [6] that the group T'g(N)* generated by {T'o(NV),
(‘8, 7)1 )} has a genus zero exactly for N =1 ~ 21,23 ~ 27,29, 31, 32, 35,
36.39,41,47,49,50,59,71. Moreover, for all such N but 49 and 50,
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[o(N)* has a fundamental Thompson series Tx(a) corresponding to
itself, that is, Tx () is defined by an element of order N of the Monster
group ([4], Table 2). Throughout this paper, we denote a to be a root
in $ of a quadratic equation az? + bz + ¢ = 0 with (a,b,¢) = 1 and
a > 0, and K as an imaginary quadratic field Q(a). Chen-Yui ([3],
Theorem 3.7.5 (2)) showed by using the Shimura reciprocity law that
when (a, N) = 1, T3/ («) generates a ring class field over K.

In §2, we first construct some sort of class fields with T'q(N)* by
means of Shimura’s ideas.

Next in §3, we generate a ring class field K(T}(«)) over K under
the condition (a,b,N) # N or (#,N) # 1. This further generalizes
Chen-Yui’s result under the assumption (a, N) = 1.

On the other hand, it has been known that there exists a funda-
mental Thompson series Ty of level N = o(g) exactly when N = 1 ~
36,38,39,41,42,44 ~ 47,49,50,51,54 ~ 56,59,60,62, 66,69 ~ 71,78,
87,92,94,95,105,110,119 ([4], table 2) where o(g) is the order of el-
ement g of the Monster group. In §4, we will construct, from such
Ty, (N + C;,l or {n, not only various class fields over K which are nei-
ther ray class fields of conductor N nor ring class fields of order @ with
discriminant N2dg, but also ray class fields of conductor N by applying
Chen-Yui’s method. We also demonstrate what sort of class field T,(a)
generates over a CM-field K((y + (') and over a field K (Cx).

In §5, we explore an explicit formula for the conjugates of T,(a) to
calculate its minimal polynomial.

Throughout the article we adopt the following notations:
o I' =SLy(Z)

e Iy(N)={(2%) € SLy(Z)|c = 0 mod N}

o To(N)* = ({To(N), (§ 7))

e Zy, the ring of p-adic integers

e Q, the field of p-adic numbers

e §) upper half complex plane

. CN — eZﬂ'i/N

oi=+—1

e T a fundamental Thompson series for a genus zero group I'y(N)*
e T, a fundamental Thompson series of level N = o(g)

o ~ means that z = for some v € SLo(Z
stz ? Yy y 2(Z)

e (4, the stabilizer of « for a group G



Class fields from the fundamental Thompson series 205
2. Class fields obtained by applying Shimura’s method

Let T" be a Fuchsian group of the first kind. Then X(I') =T'\$H* is a
compact Riemann surface. Hence there exists a projective nonsingular
algebraic curve Vp, defined over C, biregularly isomorphic to I'\$*. We
specify a I'-invariant holomorphic map ¢, of $* to V¢ which gives a
biregular isomorphism of I'\$* to Vr. In that situation, we call (Vr, ¢..)
a model of T\$*. Through this article we always assume that the genus
of T\H* is zero. Then it’s function field K(X(I")) is equal to C(J') for
some J' € K(X(T')) and the pair (P}(C),J’) is a model of T\$* (7],
Lemma 14).

Let G4 be the adelization of an algebraic group G = GLs defined
over Q.

Put
Gp = GL2(Qp) (p : rational prime),
Goo = GL2(R),
Gooy = {z € G| det(z) > 0},
Gg, = {z € GLy(Q)| det(z) > 0}.
We define the topology of G by taking U =[], GL2(Z,) x Goot to be
an open subgroup of G4. Let K be an imaginary quadratic field and &,
be an embedding of K into M2(Q). We call &, normalized if it is defined
by a(f) = &.(a) (i) for a € K where z is the fixed point of &,(K™)
(C Gg,) in $. Observe that the embedding &, defines a continuous
homomorphism of K into G4, which we denote again by £,. Here
Gay 18 the group GoGocr with Gg the non-archimedean part of G and
K[ is the idele group of K. Let Z be the set of open subgroups S of
G4y containing Q* Gt such that S/Q* Gy is compact. For S € Z,
we see that det(S) is open in Qf. Therefore the subgroup Q* det(S)
of Qf corresponds to a finite abelian extension of Q, which we write
ks. Put s = SN Gg, for S € Z. As is well known ([11], Proposition

6.27), Ts/Q* is a Fuchsian group of the first kind commensurable with
PSLy(Z). Let

U0 = {z = (zp) € Ulzp € Ug for all finite p}
and U% = UUU®(N),
where Uz? ={(2%) € GLa(Zp)|c = 0 mod NZ,},
®(N) = (zp) € Gag and zp = ( 5 ) -
Then we have
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LEMMA 1. (i) Q*U? € Z,

(ii) ks = Q,

(iii) Ts = Q*To(N)* if S = Q*UY.

Proof. Since Q*UY = Q*U° U Q*U%(N) and Q*U° is an open
subgroup in G a4, Q*UY is also an open subgroup in G 4. Observing
that QXU%/Q*Geoy is compact, we obtain Q*UY € Z. As for (ii),
we see that Q corresponds to the norm group Q*Q;*° with QF> =
R*[[,Z, and det(U?) = Ndet(U°). But det(U°) = Q4> and hence
by the class field theory kg = Q. Indeed, clearly det(U?) is contained in
Q4. Conversely, for any element (a;) € Qx™, take y, = ((1) C?p), then
(yp) € Up and det(y,) = (dety,) = (ap). Lastly, we readily get that
T's = Q*UY N Goy = Q* (U N Goy) = Q*To(N)* O

THEOREM 2. Let K be an imaginary quadratic field. For fixed z €
KnN$, let &, be the normalized embedding. Then Ty (z) belongs to the
maximal abelian extension K% of K and K (T} (z)) is the class field of
K corresponding to the subgroup K* - £;1(Q*U?) of K.

Proof. We have kg = Q and I'g = Q*T'o(N)* by Lemma 1. Since T}
gives a model of X (T'g(N)*), the assertion follows from [11] Proposition
6.31 and Proposition 6.33. O

3. Ring class fields generated by singular values of T,

In this section, we obtain Theorem 4 which would be an extension
of [3], 3.7.5 Theorem(2) by using Shimura’s method and the standard
results of complex multiplication. To this end, we need the following
fact.

THEOREM 3. Let §n be the field of modular functions of level N
rational over Q(e?™/N), and let K be an imaginary quadratic field. Let
Ok be the maximal order of K and a be an Og-ideal such that a =
[21,20] and o = 21/z3 € $). Then the field K§n (o) generated over K
by all values f(«) with f € §n and f defined at «, is the ray class field
K(ny over K with modulus N.

Proof. [9], Ch. 10, Corollary of Theorem 2. d

By class field theory, the reciprocity map induces an isomorphism
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where Uy is the subgroup of K given by
Uy ={s € KS |s, € O and s, = L mod NO, for all finite primes p}.
For a subfield L of Ky, let

yx « Ix(N) — Gal(L/K)

denote the Artin map. Then Ker(®k ,/x) = Pk,1(N), where Ix(N)
is the ideal group generated by all fractional ideals in K prime to N
and Pg,;(N) denotes the subgroup of Ix(N) generated by the principal
ideals 80k with 8 € Ok and 8 = 1 mod NOg. Of course, O is the
ring of integers in K.

THEOREM 4. Let Ty, be a fundamental Thompson series for a genus
zero group I'o(N)*. Let a be a root in $ of a quadradic equation
az? + bz + ¢ = 0 such that a > 0, (a,b,c) = 1, and b* — 4dac = m?dk <
0(m >0). Let K = Q(a) and O (= Z[aa]) be an order in K of discrimi-
nant m?dy. Assume that (a,b, N) # N or (§:N) # 1. Then K(Tx(a))
is a ring class field of an imaginary quadratic order OO’ of discriminant
f?dx where f = mN/(a, N) and dk is the discriminant of K.

Proof. First of all, we describe the action of arbitrary prime deal p
of Ok on Ty (o) under the Artin map @K(T&(a))/;{ which is guaranteed
by Theorem 4. Take a rational prime p which does not divide 2abcm N
and splits in K. Then pOy = pgp , where p = (p,ﬁ%i@), r? =
m2dyx mod p and r € Z with b — r and b + r both even (since aa is
a root of the polynomial 22 + bz + ac = 0 and p splits in K, there
exists 7 € Z such that r? = m%dg mod p, 2% + bz +ac = (z + 55) (2 +

247) mod p and b — r,b+ 1 € 2Z, andaa—{—l’iT’":"—H%\/L_"—}—b—ff:

j:rJrr;\/f_l?_), We define v = TQ_—A’%C_"K_ (€ Z) and hence ord,v = 0.
We now take an idéle s corresponding to an ideal p to be
—rAmVdg )
2 s Ly "7 )

where we put 1 at all places except the place corresponding to p. Under
the embedding &: K — Gag, § is sent to

fa(s):(b,---(bf ;_";),---)

a 2

s=(1, -,

because % VAKX — qa + :%F—lz and _r+'2nvdKa = —7«2—50{ — ¢. This

implies

50(341) = (]127'” 1piv (bgr —rc—b> 7)
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Let p; !, k, pN,l € Z be such that ak + pp;! = 1 and Nl—l-pp]_\,1 =1.

Then
1y —(r+b)kNI 1 /b-r » ) (r+8)(-kNla)
£a(s )_((p——L% ); =) (T )
1 (r+b)kNI
(37%7)
0 1
=1u-g.

Since 1 — kNla = p(akpyt + p7 N1+ pp;'oat), u = (ug) € U and
g € GLI (Q). Notice that u, = (38 (1)) mod NMj(Zg) for every finite
prime ¢ and define

Uy = (29) and Ay = ( ) Uy € SLy(Z/NT).

Lift Ay to a matrix Ay in I'o(N). By the Shimura reciprocity law, we
get

T3 (o)l Kao/ K] = T;[T(éa(fl))(a) _ T;,T(“)T(g)(a)
= Ti(Ange) = Tx(9e)

T (( (r+b)kNl/2) a).

Let A be a matrix ((1) (’"+b);le/2> and suppose that Tj (o)l Keo/Kl =
Ty (a). Then
A € To(N)*"GL2(Q)F-

If A is contained in To(N) (3! ) GLT (Q)a, then.A () (Fx)
for some z,y, z,w € Z and v € [o(N) with z§ + ¥ = (2« +w)a We
also see that &2 = Nu—z — =8 := ) € Z\{0} and (A,N)=1 ( because
if A =0, then w = £+/p/N ¢ Z This implies that A is not zero. We
now set A = w1th 0,A € Z\{0}, (3, A) =1, then A|(a,b,c) =1 and
hence A € Z Also, (N,p) = 1 and zw — yz (Nw —b\)w+chz =p
imply (A, N) = 1). Here, the fact that Z—W is an integer means that
N divides a. Moreover, since N divides  and bA = Nw — z, N divides
b and hence (§, N) = 1. These give a contradiction to our assumption
(a,b,N) % N or (&, N) # 1. Therefore, A € To(N)Ma(Z)7 and we can
take v € Ty(N) and d, A € Z such that

A= ((1) (r+b)11:zvl/2) — (d;)l\;)\ —gx)

and (d — bA)a — ch = afa) + d) Observing p = acA? — bdx + d* =
o (d — aar — bA)=a'o’ where o' := d + aa) € O(= Z[aa]) and ' € O
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is the complex conjugate of o, we obtain pOg=(a')(a/) =pg . That is,
¢ is a principal ideal generated by an clement o (or ') in O .

On the other hand, for each a € Ix(N), we can take a prime ideal
9 € Ix(2abermN) and a principal ideal (z) € Pg,1(N) with a = (z)p.
Indeed, if an ideal a in K is prime to N, then a = a*(3) for some
a* € Ix(2abemN) and () € Pk 1(N) ([10], Corollary 3.16 and 3.18),
and the ideal a* just given can be factored into (z)p for some prime ideal
© € Ix(2abemN) and (z) € Pk 1(2abemN) ([8] VIII §4 ,Corollary of
Theorem 8). Consequently, ker(® K(TY(a))/ k) 1s contained in a subgroup
Py 1(N)Y(P(O)NIK(N)) of Ix(N), where P(O) is the group of principal
O-ideals. ( Of course, we consider elements in P(O) as Ok-ideals.)

Let () be a principal ideal of O relatively prime to N and write
3 = naa +1 € Zaa + Z(= O). We see from Lemma 5 below that the
action of (3) on T} (@) is represented by a matrix Ag € SL2(Z) whose
image in SL2(Z/NZ) is equal to (anj\l;?égl_l INZE;L“ ) Thus, we derive
that (3) fixes Tx () if and only if Ag € To(N)*GL2(Q)q. First, suppose
that NV does not divide a. By similar arguments as we used to show that
A € Ty(N)*GL2(Q)} implies A € To(N)M2(Z)F, we can verify that
(B) fixes TR (a) if and only if Ag € To(N)SLy(Z),. But we know that
SLy(Z)4 is trivial unless o is S Ly (Z)-equivalent to €2™/7 with r € {3,4}.
Assuming SL9(Z)s = {£1}, we see that Ag € +T'(N) if and only if
Nlan. Therefore the principal ideals in O which fix Tx () are of the
form (8) with disc(8) dividing (mN/{a, N))2dx. But these principal
ideals are all in P(Q'). The cases a SLN(Z) e?™/" with r=3 or 4 can be

2

treated similarly. These prove our assertion in the case that N does not
divide a. Now suppose that N divides a. Then Ag fixes T¥(a) and

hence T3 (a) generates the ring class field of O'. O

LEMMA 5. Let f be a modular function of level N with rational
Fourier coefficients and (3) a principal ideal of O relatively prime to
N. Write 8 = n(aa) + 1 € Z(aa) + Z(= O). And let Ag be a matrix

in §Ly(Z) whose image in SLy(Z/NZ) is equal to (an_]\l,’?[;;l_l INZE?—I).
Then the action of () on f(«) is given by

F(a)lB) Kao/K] — #( A5 . @)
where |-, K/ K| is the Artin map.

Proof. Let () correspond to an ideles = (1,...;3,...) € K™ where
we put 1 on each place dividing N and 3 on the other places. Under the
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embedding &, : KpaX — Ga™T, s is sent to

Sals) = (I, (Tt 7))
because §-a = (naa+1)a = (—bn+l)a—cn and B-1 = na-a+1. Then
_ 1
tols™) = (175 (o -8000) )

1
= (") b, ) NB) (_én —bm)

=Uu-g

—bn4l — |
where u = (=), I.) and g =yl (L, %) € Ga,.
Since det (‘Z’TLL” _lcn) = N(p) is relatively prime to N, u belongs to
U. Write u = (up). Note that u, is congruent to ( o™+ ~¢m} modulo

NM;(Zy) for any finite prime p. Put ﬁj/vz( “bntl—cn) ¢ GLy(Z/NZ)

an l
A 1 0 —bn+l — —bn+l —c
and Zg=( § geuiley ) (7 =) = (il i) € SLa(Z/ND).
We now lift Ag to a matrix Ag in SLy(Z). Then we derive by Shimura
reciprocity law
Fla)BrKap/K] — ¢r(€als™) () = fr()T(9) (q)
= f(Ag-ga) since f has rational Fourier coefficients

= f(Apa) since g =& (7).
|

4. Class fields over an imaginary quadratic field K, CM-
fields K((n + ¢xN') and K(¢N)

THEOREM 6. Let T be a fundamental Thompson series of level N =
o(g). Let a be a root in $ of a quadratic equation az? + bz + ¢ = 0 such
that a > 0, (a,b,c) = 1, and b%> — dac = dg < 0. Let K = Q(a) and
O(N) be an order Z + NOk in K of discriminant N2dyg and put K be
a CM-field K ({n +C;,1). Under the assumption (a, N) = 1 the following
assertions hold.

(1) K'(T,(c)) is a class field over K with

Gal(K (Ty(a))/K) = Ix(N)/Pg(N)

and

OB
2[Pg(N): Pg1(N)]

K (Ty(e) : K] =
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where }BK(N) is a subgroup of Ix(N) gencrated by all principal ideals
A0y such that # = naa +1 € Zaa+Z(= Ok), N|n and 1> = +1modN,
and ¥(1) = ¥(2) = 2 and ¢ is the Euler p-function for N > 3.

(2) T,(a) generates a class field K’ (T (a)) over K, with

Gal(K'(T,(e))/K') = Lo (N)/N 2} (Pic(N)

and

o , h(O(N
K (Ty() : K} = =)
[Pr(N) : Pra(N)]
where h(O(N)) is the class number of O(N) and I, (N) is the ideal
group generated by all fractional ideals in K’ prime to N.

Proof. In the proof of Theorem 4, take m = 1, give a condition
(N,a) =1 and replace T () by Ty(a). Then the arguments from the

1 {rHb)kNI

beginning to the step of letting a matrix 4 = (0 2 ) in My(Z) are
p

exactly the same as those in Theorem 4. We assume that T (a)P Fab/£]

= T,(c). Then A € Fo( )]\-IQ(Z)Jr Indeed, if A € W.GL] (Q)a, then
Ay = (4% 5) <d l; ) for Ae?~BcN =, (0,A) = Le|A,A #1

RN

and A, B,C,D,e, A, A, 0 € Z. A matrix (@N De) Ag implies that aA
is an integer, and hence e divides a. This is absurd. Here W, is a non-
trivial Atkin-Leher involution. Therefore, likewise as in the proof of The-
orem 4, ker(® g1 (a))/x ) is contained in a subgroup Pk (N)(P(Ok)N
Ik (N)) of IK(N)

Let (/) be a principal ideal of Ok relatively prime to N and write
3 =nao+1 € Zaa + Z(= Ok). Since we see from Lemma 5 that the
action of () on Ty(«) is represented by a matrix Az € SLy(Z) whose
image in SLy(Z/NZ) is equal to (an?\?(nﬁtl—l IN?[))C;L—l ), we get that (()
fixes Ty(«x) if and only if Ag € T'g(N)SLy(Z)q by replacing A by Ag in
the above argument. This implies that (8) € ker(CIDK/(Tg(Q))/K) if and
only if Ag € I'o(N)SLo(Z)q and N(8) = +£1mod N. But we know that
SLy(Z)q is triwial unless « is S Lo(Z)-equivalent to e withr € {3,4}.
Assuming SLy(Z), = {£1}, we obtain that

(8) e ker(@}\,:(,[‘q(u))/}() if and only if N|an and N(8) = £1mod N

if and only if N|n and I = £1mod N
if and only if (8) € Py (N).
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The case where « is SLy(Z)-equivalent to e with r € {3,4} can be
treated similarly. These prove (1).

For any a € I (N), [0, K (Ty(a))/K'] = [Ny e (a), K (Tg(e))/ K]
and Ny /g (Ig (N)) C Ik (N) implies

Gal(K (Ty(e))/K') = L (N) /N7 (Pic(N)).

Since Pk,1(N) is contained in Py (N), we obtain from the field tower
below

: ' P(N)MO(N)) ___ how))
KAL) K= ok - K @)K K]~ [Be(N) = Pra(V)]

AN
"~

KNnQUn+¢yY) =Q

QN + Y

O

CoROLLARY 7. Under the same assumptions and notations as in
Theorem 6, we have that if ¢ € Z and x> = +1 mod N implies x =
+1mod N, then

(1) K'(T,(a)) = K(ny is the ray class field over K with modulus N
and

, P(N)A(O(N))

[Kvy : K] = ————,
(2) Ty() generates a class field K’ (Ty(cx)) over K' with
Gal(K'(Ty())/K') = I, (N)/N % k(P ()

and

(K (Ty(a)) : K']= R(O(N)).

Proof. These are clear from Theorem 6 O
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ExampLEs 1. For N =2, 3, 4, 6, 7, 9, 11, 14, 18, 19, 22, 23, 27, 31,
38, 46, 47, 54, 59, 62, 71, 94,2 € Z and 22 = %1 mod N imply
z = +1 mod N so that K(Cn + (y', Ty(e)) = K(ny is the ray class
field over K with modulus N. On the other hand, observing that

Pr(13)
= ({A0k| f=naa+1 € Zaa+Z, 13Inand [ =1 or 5 (mod 13)} ),

[Py (13) : Pg1(13)] = 2, and
[K(CIB + Cﬁl,Tg(a)) : I{(CIB + 41—31)} _ L(géléﬁ

we see that K (C13 + (3. Ty(@)) is neither a ring class field of an order
Z + 130k nor a ray class field K3y with moduluds 13. We also have
similar examples:
Py (15)
=({A0k| B=naa+1 € Zaa +7Z, 15|n and { =1 or 4 mod 15}),

P (16)

={{BOk!| B=naa+1 € Zaa +Z, 16jnand [ =1 or 7 mod 16}),
Py (17)

=({{80k| B=naa+1 € Zaa+Z, 1Tnandl =1 or 4 mod 17}),
P (20)

={B0k| B=naa+1€Zaa+7Z, 20ln and [ =1 or 9 mod 20}),
Py (21)

={{B0k| B=naa+1 € Zaa+Z, 21jnand [ =1 or 8 mod 21}),
Py (25)

={BO0k| B=naa+1 € Zaa+Z, 25Inand l =1 or 7 mod 25}),
Py (26)

={{80k| B=nac+1 € Zaa+Z, 26jn and I =1 or 5 mod 26}),
Prc(28)

=({{f0k|B =naa+1 € Zaa+Z, 28n and [ =1 or 13 mod 28}),
Py (29)
=({80k|B=nac+1 € Zaa+Z, 29n and I =1 or 12 mod 29}),
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Py (30)

=({BOk|B =naa+1 € Zaa+Z, 30lnand [ =1 or 11
Py (32)

=({BOk|B=naa+1€Zaa+Z, 32/nandl=1or15
Py (33)

={{BOk|B =naa+1 € Zaa+7Z, 33|n and l =1 or 10
Py (34)

=({BOk|f=naa+1 € Zaa+Z, 34nandl=1or 13
Py (35)

={{B0k| B=naa+1 € Zaa+Z, 35nand [ =1 or 6
Py (36)

={({B0k|8 =naa+1 € Zaa+7Z, 36in and [ =1or 17
Prc(39)

=({BOk|B =naa+1 € Zaa+7Z, 39|n and =1 or 14
Pre(41)

=({BO0k| B=naa+1€Zac+Z, 4ljnand [ =1o0r 9
P (42)

=({BO0k|B=naa+1 € Zaa+Z, 42ln and I =1 or 13
Py (44)

={{BOk|B=naa+1 € Zaa+2Z, 44|n and I =1 or 21
Py (45)

={BOk|B =naa +1 € Zaa+Z, 45|n and [ =1 or 19
Py (50)

={BO0k| B=naa+1 € Zaoa+Z, 50/n and [ =1or 7
P (51)

=({BO0k|B =nac+1 € Zaa+Z, 51ln and | =1 or 16
Py (55)

=({{BO0k|B =naa+1 € Zaa +Z, 55n and [ =1 or 21
P (66)

= ({BOk|B = naa+1 € Zaa+7Z, 66{n and [ =1 or 23

mod

mod

mod

mod

mod

mod

mod

mod

mod

mod

mod

mod

mod

mod

mod

30}) ,

32}> ?

33}) H

34}) 4

35},

36}> 7

39},

41}> 7

42}> ?

44}) H

45}),

50})

51})

55}) ?

66}) ?
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Py (69)
=({B0k|B=naa +1 € Zaa+Z, 69n and I =1 or 22 mod 69}),

Py (70)
= ({BOk|B=naa+1 € Zaa+Z, 70n and l =1 or 29 mod 70}),

Py (78)
={BO0k|B=naa+1 € Zaa +Z, 78n and l =1 or 25 mod 78}),

Py (87)
={{BOk|B =naa+1 € Zaa+Z, 87n and | =1 or 28 mod 87}),

P (92)
= ({BOk|B =naa+1 € Zaa+Z, 92|n and I =1 or 45 mod 92}),

Py (95)
={B0k|B=naa +1 € Zaa+2Z, 95n and | =1 or 39 mod 95}),

P (110)
={pO0k|B =naa +1 € Zac +Z, 110n and { = 1 or 21 mod 110}),

P (119)
={{BO0k|B =naa+1 € Zaa +Z, 119|n and I =1 or 50 mod 119}),

[Pk(N) : Pga(N)] = 2, and [K(Cy + (3E Tyl@) « K(Cv + CYY)) =

MOWND) for N =13, 15, 16, 17, 20, 21, 25, 26, 28, 29, 30, 32, 33, 34,

35, 36, 39, 41, 42, 44, 45, 50, 51, b5, 66, 69, 70, 78, &7, 92, 95, 110,
119. Meanwhile

Pr(56) =< {B0k|B = naa +1 € Zaa + Z, 56|n and [ = 1
or 13 or 15 or 27 (mod 56)}t >,

.5;((60) =< {B0k|B=nac+! € Zaa+Z, 60jn and [ =1
or 11 or 19 or 29 (mod 60)} >,
P (105) =< {80k|B = naa +1 € Zaa + Z, 105n and | = 1
or 29 or 34 or 41 (mod 105)} >,

[Pr(N) : Pra(NV)] = 4, and [K(Cv + (31 To(a)) = K(Cv + G31)] =
ROWND) for N =56, 60, 105.
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THEOREM &. Under the same assumptions and notations as in The-
orem 6, we let E = K({v) = Q(a,(y). Then the followings hold :
(1) E(T,(a)) is a class field over K with

Gal(E(Ty(a))/K) = Ix(N)/ P (N)

and

E(Ty(a)) : K] = — CQWWE)

2Py (N): Px1(N)]

where P k(N) is a subgroup of Ix(N) generated by all principal ideal
BOk such that B = naa+1 € Zaa+ Z(= Ok), Nln and 12 = 1 mod N.
(2) Ty(a) generates a class field E(Ty(a)) over E with

Gal(B(T,(a))/E) = Ip(N)/Ng e (Pxc (N))

and
Ug(h_]g;_gv»_(]v_)] if KCQ(Cn),
[E(T4(e)) : E) = ML otherwise

2[P x (N):Pic.1(N)]

where Ig(N) is the ideal group generated by all fractional ideals in E
prime to N.

Proof. We can show (1) by the same arguments as in Theorem 6.
Considering the field tower bellow we have (2).

E=K((n)
K / \ Qcw)

KnQ(¢wn)

Q O
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COROLLARY 9. Under the same assumptions and notations as in The-
orem 8, We derive that if 22 = 1 mod N implies z = +1 mod N then
(1) E(Ty(a)) = K(ny is a ray class field over K with modulus N and

NYh(O(N
Ky ] - PO
(2) Ty(«x) generates a class field E(T,(c)) over E with
Gal( E(T,(@))/E) = In(N)/Ng e (P (V)
and
o J MOWN)if K CQ(Cw),
[B(Ty(e) - E] = { h(oz(N)) otherwise.
Proof. They are clear from Theorem 8. O

ExaMpLES 2. For N= 5,10,13,17,25,26,29,41,50, z?> = 1 mod N
implies z = +1 mod N and hence K((n,Ty(a))= Ky is the ray class
field over K with modulus N.

On the other hand, taking « as a root in § of the equation 2242 = 0
we have

K = Q(v-2)(¢ Q(G)), [QUV=2, ()(Tg(V-2)) : Q(V -2, ()]
h(O(N
= (—2(_2 and Q(V -2, <67 TG*(V —2))
- Q( \Z _27 CG + Cs_lv Tg( v _2)) = Q( v _2)(6)
Taking « as a root $ of the equation 2?2 + 3 = 0 we also get that
K =Q(vV-3)(€ Q) [Q(V—3, ¢6)(Tg(V—3)) : Q(vV—3, ()]
= h(O(N)) and Q(vV-3, (s, T5(V-3))
= Q=3 G+ ¢ TE(V-3)) = Q(V=3)e).

REMARK. Under the same assumptions and notations as in Theorem
6,8 let 3 be a root in § of the equation a'z? + ¥z + ¢/ = 0 such that
d >0,(a,b,¢) = 1and > —4ad'd = m?dg. In fact, if (o', N) = 1, then
K'(T, ( ))=K'(T4(8)) and E(Ty(a))=E(Ty(8)).

By using the same arguments as in Theorem 6, 8 we obtain the fol-

lowing two theorems.

THEOREM 10. Under the same assumptions and notations as in The-
orem 4, let K' be a CM-field K(¢n +C1§1). Then the following assertions
hold.
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(1) K'(T};(a)) is a class field over K with
Gal(K (T}(@))/K) = Ix(N)/Pk1(N)Px(N, )

and
h(O(N))y(N)
2[Pi,y (N) P (N, @) : Py (V)]
where f’K(N , &) Is a subgroup of Ix (N) generated by all principal ideal
BOk such that 8 = naa +1 € Zaa + Z(= O), N|an and 1> — bnl =
+1 mod N, and ¥(1) = ¢(2) = 2 and ¢ is the Euler p-function for
N > 3.
(2) T (o) generates a class field K (Tj;(a)) over K' with

Gal(K'(T§(e))/K') = I (N)/N K/K(Px,l(N)ﬁK(N,a))

K (TN (a)) : K] =

?

and

- / h(O(N
K (Ti(e) : K] = MO
[Px1(N)Pg(N,a): Pg1(N)]
where h(O(N)) is the class number of O(N)(=Z + NOk) and I (N)
is the ideal group generated by all fractional ideals in K " prime to N.

THEOREM 11. Under the same assumptions and notations as in The-
orem 4, let E= K(({n). Then the following assertions hold.
(1) E(T%(c)) is a class field over K with

Gal(E(T}(e))/K) = Ix (N)/Px.1 (N)Pr (N, a),

where Py (N, ) is a subgroup of Ix(N) generated by all principal ideal
BOk such that 8 = naa +1 € Zaa + Z(= O), N|an and 1> — bnl =
1 mod N,

(2) Tx (o) generates a class field E(Tf(a)) over E with

Gal(E(Tx(a))/E) = Ip(N)/ E/K(Pm(N)PK(N a)),

where Ig(N) is the ideal group generated by all fractional ideals in E
prime to N.

EXAMPLES 3. Let @ and 3 be roots in §) of two equations 222+2z+1 =
0 and 42% + 82 + 5 = 0, respectively. Then K = Q(a) = Q(8) = Q(3).

(1) Observing that Px(36,a)=< {yOk|~y = n2a+,18|n and | =
1 or 17 mod 36} >, we see that Pg,1(36) C Pr(36,a) = Ix(36) N
P 1(18) = Pk,1(18). Hence by class field theory, K ((s6 + (3 s T35(c))
is the ray class field over K with modulus 180y
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(2) Notice that the similar result as in (1) may not be obtained and

that the class field K'(Ty5(a)) over K depends on the choice of . In-
deed, we obtain that ISK(26,6)2< {YOk| v = n4B + |, 13jn and [ =
1 or 5 mod 26} > is contained in }BK(QG,(X) =< {yOkly = n2a +
[,13|n and I =1 or 5 mod 26} > and Pk, ;(26) is contained in ﬁK(QG, a)
by definition. Since P (26, a) is not equal to Ix(26)N Pk 1(13) (because
50k € Pk (26, ) but 50k ¢ Ix(26) N Pr,1(13) ), K(Cas + Gog'» Tg(a))
is not the ray class field over K with modulus 130g.
Suppose that v = n2a +1,13jn and I = 1 or 5 mod 26. Then 72 = [2
+1 mod 26 and hence Y20k Pk 1(26) = Pk 1(26). Now, if 26|n and [ =
5 mod 26, then yOx Pk 1(26) = (5)Pk,1(26). Meanwhile, if n = 26k+13
for some integer k and [ = 5 mod 26, then yOg Py 1(26) = (13 - 20 +
5)Ok Pr 1(26). Lastly, if n = 26k + 13 for some integer k and | =
1 mod 26, then yOg Pk 1(26) = (13 - 2o + 1)Ok Pk 1(26). These imply
[P (26, @) : Pr1(26)] = 4. Moreover [Px.1(26) P (26, 8) : Px 1(26)] = 2
because 40 = 2(2a) — 2.

(3) We see that Pg(26.a)=< {YOk|y = n2a + ,13jnand |l =

1 mod 26} > is contained in }SK(QG, a). But 151((26,()5) = I(26) N
Py 1(13). Indeed, if v = n2a + . 13|n and { = 1 mod 13, then N(v) =
12 mod 2 and hence [ must be an odd number (ie. ! = 1 mod 26)
for vOk to be contained in Ix(26). Therefore by class field theory,
K (Cos- Tog(cr)) is the ray class field over K with modulus 130k and

(Pr(26.0) : Pr1(26)] = 2.

Notice that Px.1(26) Pk (26, 3), }3}((26,&) and 15;((26, «) are congri-
ence groups with the same modulus 260 for K, but they are all distinct
and correspond to different class fields over K.

I

5. Explicit calculation of minimal polynomials

We will find an explicit formula for the conjugates of Tg(«x) permitting
the numerical calculation of its minimal polynomial. Let Qq, (N) be
the set of primitive quadratic forms [a/,b/,cl] having discriminant dx
with the property that @' > 0 and (a', N) = 1. For v € To(N) and
Q € Qur(N). Q o~ again belongs to Qq, (N). Hence the quotient
Qup (N)/To(N) is well-defined.

THEOREM 12. Under the same conditions and notations as in Theo-
rem 6, the following assertions hold.
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(1) |Qax (N)/To(N)| = R(O(N)) where O(N) = Z + NOk,

(2) K(Ty(x)) is the ring class field of O(N) so that [K(Ty(c)) : K]

= h(O(N)),

(3) Let {Qi}i=1,..no(n)) be a complete set of representatives for
Qd, (N)/To(N). If we define a polynomial f(z) by

h(O)

F@) = 1] (@~ Ty(rq.)

i=1

then f(x) is the minimal polynomial of Tg(a) over K. Here 1g, are the
roots in $) of the equation Q;(z,1) =0,

(4) f(z) € Z[z].

Proof. Since there is a one-one correspondence between Qq, (N)/T'o(IV)
and I'x (N)/Pkz(N) ([3], Proposition 41), we obtain (1).

As for (2), the arguments from the beginning to the step of taking a
matrix Ag in SLy(Z) are the same as those used in the proof of Theorem
6. Thus (8) € ker(®x(1,(a)) k) if and only if Ag € To(N)SL(Z)q-
But we know that SL2(Z), is trivial unless « is SL2(Z)-equivalent to
e?™/" with r € {3,4}. Assuming that SL3(Z)q = {£1}, we have that
Ap € £I'y(NV) if and only if N|n. Therefore the principal ideals in Og
fixing Ty(a) are of the form (3) with disc(3) dividing N2dk. And these
principal ideals are all in P(O(N)). The cases « s e?™/™ with r=3

2
or 4 can be done similarly. These prove the assertion (2).

Since O, = O = [1, aal, b¥*—4ac = dg,a > 0 and (a, N) = 1,a, b, c|
lies in Qg (IV). This means that Ty(c) = Ty(7g,) for some ¢ and hence
f(z) certainly has Ty(a) as a root. Now we claim that the conju-
gate of Ty(a) over K must be of the form Ty(rg,) for some j. In-
deed, let o(# idg(1,(a))) € Gal(K(Ty(a))/K). Then there exists a
prime ideal p such that ¢ = [p, K(Ty(a))/K]| and p N Z = (p) splits
in K (see the proof of Theorem 4). As shown in the proof of Theo-
rem 4, the action of p is represented by a matrix A = ( ) € My (Z),
that is, Ty(@)’ = Ty(Aa). Put 7 = Aa. Then pr = « + t; hence
a(pr —t)2+b(pr’ —t)+c = 0 and ap®+ 2 + (bp— 2apt)7 +a,t2 —bt+c=0.
Dividing the coefficients of 7 by their greatest common divisor, we ob-
tain that o' 72+b'7 +¢ =0,(a’,b,¢)=1and a > 0. Since (N,p) =1
and (N,a) = 1, (N,a’) = 1. This implies that [a’,b’, ¢ lies in Qq, (N)
and so Ty(a)? = Ty(7g;) for some j.
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Since |Qay (N)/To(N)| = h(O(N)) and there are exactly h(O(N)) con-
jugates of T,(«a) over K, f(x) is the minimal polynomial of Ty(a) over
K. Therefore, (3) is verified.

Let Ty(2) = q ' + 3,51 Hng" (Hy € Z) be the Fourier expansion of
T,. Write g = 2 4 yi € § and consider

m — e—2mi(etyi) 4 Z H, e~ 2min(z+yi)
n>1
_ e~27ri(«:c+yi) + ZHne—Qﬂ'in(—r‘*’yi)
n>1
= To(—2x + yi)
= Tg(Ta),

where @ is defined to be [a, —b,c] when Q = [a,b,c]. This shows that
the complex conjugate fixes the roots of f(z) and hence f(z) € R[z].

Moreover, since T,(«) is an algebraic integer ([3], Theorem 1), f(z) lies
in Z[z]. This proves (4). O

THEOREM 13. Under the same assumptions and notations as in The-
orem 6, let g(z) € K'[z] be a monic irreducible factor of f(z) having
Ty(cv) as a root. Then g(x) is the minimal polynomial over K' and lies
in O, {z]. In particular, under the same conditions as in Corollary 7,
f(z) is the minimal polynomial of Ty(c) over K' where f(z) is given as
in Theorem 12.

Proof. Obvious. O

THEOREM 14. Under the same assumptions and notations as in The-
orem 8, let h(r) € Elz] be a monic irreducible factor of f(x) having
Ty(a) as a root. Then h(x) is the minimal polynomial over E and lies in
Oglz]. In particular, under the same conditions as in Corollary 9, f(x)
is the minimal polynomial of Ty(c) over E if K C Q((n), where f(x) is
defined as in Theorem 12.

Proof. Clear. o

ExAMPLES 4. Take K = Q(v/—1), Ty =T} and a = [1,V/—1] = Ok.
Then the degree of K(T75(v/—1)) over K is h(Z + 120k) = 8. Observe
that

Qu, (12)/To(12) = {[1,0,1],[5,4,1],[5,6,2], [17,8, 1], [17, 8, 1],
[13,10,2], [37,12, 1], [25, 14, 2]}.
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Now, Theorem 12 allows us to have an explicit calculation of the minimal
polynomial of T},(v/—1). In fact, by approximating T75(7g,) with the
aid of a computer we can get f(z) = 28 — 56027 + 96162% — 7198425 +
30270424 — 77312023 + 120152822 — 10533922 + 401848 because f(z) has
integer coefficients. Moreover factoring f(z) by using a computer we see
that z? — (156v/3 4 280)z3 + (1198v/3 + 2112)x? — (5296 + 3020v/3)z +
4366 + 24941/3 is the minimal polynomial of T},(v/—1) over Q(e% ,4)

and over Q(le%i + e_Tﬂ,i). Notice that K is contained in Q(e%,z’) =
Qe +e75,1).
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