Blast Modeling of Concrete Column Using PFC

PFC를 이용한 콘크리트기둥의 발파모델링

  • Published : 2005.03.01

Abstract

An explosion modeling technique was developed by using the spherical discrete element code, $PFC^{3D}$, which can be used to model the dynamic stress wave propagation phenomenon. The modeling technique is simply based on an idea that the explosion pressure should be applied to a $PFC^{3D}$ particle assembly not in the form of an external force (body force), but in the form of a contact force (surface force). A test blast was conducted for a RC column, whose dimension was $600\times300\times1800$ in millimeters. The initial velocities of the surface movements were measured to be in the range of $14\~18\;m/s$ with the initiation times of $1.5\~2.0m$. Then the blasting procedure was simulated by using the modeling technique. The particle assembly representing the concrete was made of cement mortar and coarse aggregates, whose mirco-properties were obtained from the calibration processes. As a result, the modeling technique developed in this study made it possible for the burden to move with the velocity of $17\~24\;m/s$, which are slightly higher values compared to those of the test blast.

본 연구에서는 $PFC^{3D}$를 사용하여 시멘트 모르타르와 굵은 골재로 이루어진 콘크리트 기둥의 발파과정에서 나타나는 폭발과 파괴현상을 모사하여 보았다. 폭원모델링 과정에서는 공내입자들의 반경을 팽창/수축시키는 기법을 통해 공벽입자들에 접촉력의 형태로 폭발압력을 부여하는 방법을 사용하였다. 현장 발파실험에서는 철근콘크리트 기둥을 대상으로 초안폭약을 사용하여 발파하고 그 파괴거동을 고속카메라를 이용하여 관찰하였다. 모사과정에서는 철근의 규격과 입자요소의 크기에 따른 해석시간을 고려하여 모르타르와 굵은 골재로 이루어진 콘크리트 기둥을 대상으로 제안된 폭원모델링 기법을 적용하여 해석을 실시하였다. 해석결과 나타난 저항선의 이동속도는 $17\~24\;m/s$로서 실험치 $14\~18\; m/s$를 약간 상회하고 있으나 제안된 폭원모델링 기법을 사용한다면 암석이나 기타 재료들에 대한 발파과정에서 나타는 파괴거동을 수치적으로 보다 유사하게 모사할 수 있을 것으로 판단된다.

Keywords

References

  1. Brinkmann, J. R., 1987, Separating Shock Wave and Gas Expansion Breakage Mechanisms, Proc. 2nd Int. Symp. on Rock Fragmentation by Blasting, W. L. Fourney and R. D. Dick, Eds., Bethel, Connecticut, Society for Experimental Mechanics, pp. 6-15
  2. Brinkmann, J. R., 1990, An Experimental Study of the Effects of Shock and Gas Penetration in Blasting, Proc. 3rd Int. Symp. on Rock Fragmentation by Blasting
  3. Cundall, P. A., and O. D. L. Strack, 1979, A Discrete Numerical Model for Granular Assemblies, Geotechnique, Vol. 29, pp. 47-65 https://doi.org/10.1680/geot.1979.29.1.47
  4. Fourney, W. L., 1993, Mechanism of Rock Fragmentation by Blasting, Comprehensive Rock Engineering, Principles, Practice and Projects, J. A. Hudson, Ed. Oxford, Pergamon Press, pp. 39-69
  5. Henrych, J., 1979, The Dynamics of Explosion and Its use, Elsevier Scientific Company
  6. Munjiza, A, D. R. J. Owen, N. Bicanic and J. R. Owen, 1994, On a Rational Approach to Rock Blasting, Computer Methods and Advances in Geomechanics, pp. 871-876, H. J. Siriwardane and M. M. Zaman, Eds., Rotterdam, Balkema
  7. Potyondy, D. O., and P. A Cundall, 1996, Modeling of Shock- and Gas-Driven Fractures Induced by a Blast Using Bonded Assemblies of Spherical Particles, Rock Fragmentation by Blasting, Balkema, Rotterdam, pp. 55-61
  8. Preece, D. S., B. J. Thome, M. R. Baer and J. W. Swegle, 1994, Computer Simulation of Rock Blasting: A Summary of Work from 1987 through 1993, Sandia National Laboratories, Report No. SAND92-1027
  9. Sadin, L. D., and N. M. Junk, 1965, Measurement of Lateral Pressure Generated from Cylindrical Explosive Charges, USBM, RI 6701
  10. Sarracino, R. S., and J. R. Brinkmann, 1994, Modeling of Blasthole Liner Experiments, Computer Methods and Advances in Geomechanics, H. J. Siriwardane and M. M. Zaman, Eds., Rotterdam, Balkema, pp. 871-876
  11. Schatz, J. F., B. J. Zeigler, R. A Bellman, J. M. Hanson, M. Christianson and R. D. Hart, 1987, Prediction and Interpretation of Multiple Radial Fracture Stimulations, Science Applications International Corporation (SAlC), Report to Gas Research lnst. (GRI), SAIC Report No. SAIC087/1056, GRI Report No. GRI-87/0199