Cytotoxicity of COX-2 Inhibitor (Nimesulide) in Non-small Cell Lung Cancer Cell Line

비소세포폐암 세포주에서 COX-2억제제(Nimesulide)의 세포독성

  • Park Chan Beom (Department of Thoracic and Cardiovascular Surgery, College of Medicine, The Catholic University of Korea) ;
  • Jeon Hyun Woo (Department of Thoracic and Cardiovascular Surgery, College of Medicine, The Catholic University of Korea) ;
  • Jin Ung (Department of Thoracic and Cardiovascular Surgery, College of Medicine, The Catholic University of Korea) ;
  • Cho Kyu Do (Department of Thoracic and Cardiovascular Surgery, College of Medicine, The Catholic University of Korea) ;
  • Kim Chi Kyung (Department of Thoracic and Cardiovascular Surgery, College of Medicine, The Catholic University of Korea) ;
  • Wang Young-Pil (Department of Thoracic and Cardiovascular Surgery, College of Medicine, The Catholic University of Korea)
  • 박찬범 (가톨릭대학교 의과대학 흉부외과학교실) ;
  • 전현우 (가톨릭대학교 의과대학 흉부외과학교실) ;
  • 진웅 (가톨릭대학교 의과대학 흉부외과학교실) ;
  • 조규도 (가톨릭대학교 의과대학 흉부외과학교실) ;
  • 김치경 (가톨릭대학교 의과대학 흉부외과학교실) ;
  • 왕영필 (가톨릭대학교 의과대학 흉부외과학교실)
  • Published : 2005.04.01

Abstract

In recent years, a combination of two demographic phenomena, an increased number of older people in the population and an increase in the incidence of lung cancer with age, has made it mandatory to develop therapeutic modalities with less toxicity for the treatment of inoperable elderly patients with lung cancer. Therefore, we investigated the correlation between COX-2 expression and cytotoxicity of Nimesulide, a specific COX-2 inhibitor. Material and Method: Immunohistochemical staining of COX-2 was performed. After exposure of Nimesulide, XTT analysis, FACS analysis and Hoechst staining were carried out. Result: COX-2 protein was expressed in non-treated A549 cells strongly, but not in H1299. Cytotoxicity of Nimesulide against A549 cell and H1299 cell were similar and $IC_{50}$ of Nimesulide in both cell lines were $70.9{\mu}M$ in A549 cell line and $56.5{\mu}M$ in H1299 cell line respectively. FACS analysis showed $G_0/G_1$ arrest in both cell lines and the S phase cell fraction was decreased. Morphologic assessment of apoptosis by Hoechst 33258 staining, many apoptotic cells were detected in both cell lines. Conclusion: Selective COX-2 inhibitor, Nimesulide, can inhibit the proliferation of non-small cell lung cancer cell lines in vitro. Inhibitory effect of Nimesulide are induction of apoptosis and $G_0/G_1$ arrest. There is no correlation between COX-2 expression and cytotoxicity of Nimesulide, a specific COX-2 inhibitor. Therefore, highly selective COX-2 inhibitors such as Nimesulide can be expected to lead to even greater efficacy of their use as adjuncts to various anticancer angents and radiation therapy for the treatment of high-risk patients.

최근 고령화 사회가 진행되어 가면서 폐암환자에서도 수술에 적응이 되지 않는 고령의 환자가 점차 증가하는 추세를 보이고 있어 독성이 적은 치료방법의 개발에 대한 필요성이 증가되고 있다. 따라서 기존의 항암제에 비하여 비교적 안정적으로 사용이 가능할 것으로 생각되는 선택적인 COX-2 억제제인 Nimesulide를 처치하여 COX-2 발현 유무와 COX-2 억제제가 비소세포폐암에 미치는 세포독성과의 상관관계를 연구하였다. 대상 및 방법: A549, H1299 비소세포폐암 세포주에서 COX-2 단백질에 대한 면역조직화학염 색을 시행하였으며, Nimesulide 처치후 XTT 분석, FACS 분석, Hoechst 33258 염색을 시행하였다. 결과: COX-2 단백질의 면역조직화학염색결과 A549 비소세포폐암 세포주는 COX-2 단백질에 강한 발현을 나타낸 반면, H1299 비소세포폐암 세포주는 발현을 나타내지 않았다. XTT 분석결과 Nimesulide의 A549, H1299 비소세포폐암 세포주에 대한 세포독성은 유사하였으며, Nimesulide의 $IC_{50}$은 A549 비소세포폐암 세포주에서는 $70.9 {\mu}M$이었으며, H1299 비소세포폐암 세포주에서는 $56.5 {\mu}M$이었다. FACS 분석에서는 각각의 세포군에서 $G_0/G_1$ 기에서 세포주기의 지연이 관찰되었으며, S기의 세포는 감소되었다. Hoechst 33258 염색에서는 양군에서 세포핵의 주변부 농축 현상 및 핵 분절을 가진 많은 사멸세포가 관찰되었다. 걸론: 선택적인 COX-2억제제인 Nimesulide는 비소세포폐암 세포주에서 암세포의 증식을 억제함을 알 수 있었으며, 암세포증식 억제의 기전은 세포자멸사의 유도와 $G_0/G_1$기에서 세포주기의 지연임을 알 수 있었으며, COX-2의 발현유무와 세포독성은 차이가 없는 것을 알 수 있었다. 따라서 Nimesulide와 같은 선택적인 COX-2 억제제는 다양한 항암제나 방사선치료와 병행하여 고위험군의 폐암환자에서 매우 효과적으로 사용될 수 있을 것으로 기대된다.

Keywords

References

  1. Achiwa H, Yatabe Y, Hida T, et al. Prognostic significance of elevated cyclooxygenase 2 espression in primary, resected lung adenocarcinomas. Clin Cancer Res 1999;5:1001-5
  2. Hida T, Yatabe Y, Achiwa H, et al. Increased expression of cyclooxygenase 2 occurs frequently in human lung cancers, specifically in adenocarcinomas. Cancer Res 1998;58:37614
  3. Bauer AK, Dwyer-Nield LD, Malkinson AM. High cyclooxygenase 1 (COX-l) and cyclooxygenase 2 (COX-2) contents in mouse lung tumors. Carcinogenesis 2000;21:543-50 https://doi.org/10.1093/carcin/21.4.543
  4. Tsujii M, Kawano S, Dubois RN. Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proc Natl Acad Sci USA 1997;94:3336-40 https://doi.org/10.1073/pnas.94.7.3336
  5. Hida T, Kozaki KI, Muramatsu H, et al. Cyclooxygenase-2 inhibitor induces apoptosis and enhances cytotoxicity of various anticancer agents in non-snall cell lung cancer cell lines. Clin Cancer Res 2000;6:2006-11
  6. Fujita M, Fukui H, Kusaka T, et al. Relationship between cyclooxygenase-2 expression and K-ras gene mutation in colorectal adenomas. J Gastroenterol Hepatol 2000;15:127781
  7. Leung WK, To K-F, Ng Y-P, et al. Association between cyclo-oxygenase-2 overexpression and missense p53 mutations in gastric cancer. Br J Cancer 2001;84:335-9 https://doi.org/10.1054/bjoc.2000.1607
  8. Piazza GA, Rahm AK, Finn TS, et al. Apoptosis primarily accounts for the growth-inhibitory properties of sulindac metabolites and involves a mechanism that is independent of cyclooxygenase inhibition, cell cycle arrest, and p53 induction. Cancer Res 1997;57:2452-9
  9. Yao R, Rioux N, Castonguay A, You M. Inhibition of COX-2 and induction of apoptosis: Two determinants of nonsteroidal anti-iriflammatory drugs' chmopreventive efficacies in mouse lung tumorigenesis. Exp Lung Res 2000;26: 731-42 https://doi.org/10.1080/01902140150216783
  10. Kim JH, Kim RH, Yoo K. Induction of apoptosis and inhibition of cellular proliferation in aspirin-treated SNU-668 human gastric adenocarcinoma cell lines. J Korean Cancer Assoc 2001;33:71-6
  11. Rainsford KD. Effects of 5-lipoxygenase inhibitors and leukotriene antagonists pathway on the development of gastric mucosal lesions induced by nonseroidal anti-iriflammatory drugs in cholinomimetic treated mice. Agents Actions 1987; 21:316-9 https://doi.org/10.1007/BF01966502
  12. Warrington SJ, Ravic M, Dawnay A. Renal and general tolerability of repeated doses of nimesulide in normal subjects. Drugs 1993;46(Suppl.1):263-9
  13. Davis R, Brogden RN. An update of its phamacodynamic and pharmacokinetic properties, and therapeutic efficacy. Drugs 1994;48:431-54 https://doi.org/10.2165/00003495-199448030-00008
  14. Soriano AF, Helfrich B, Chan DC, Heasley LE, Bunn PA Jr., Chou TC. Synergistic effects of new chemopreventive agents and conventional cytotoxc agents against human lung cancer cell lines. Cancer Res 1999;59:6178-84