DOI QR코드

DOI QR Code

Synthesis of Silica Nanopowder via Change in Polymer Gel Concentration

고분자 젤 농도변화에 의한 실리카 나노분말의 합성

  • Kim, Ji-Kyung (School of Materials Science and Engineering, Pusan National University) ;
  • Lee, Sang-Geun (School of Materials Science and Engineering, Pusan National University) ;
  • Kwon, Jae-Youl (School of Materials Science and Engineering, Pusan National University) ;
  • Seo, Geum-Seok (Division of Applied Chemical Engineering, Pukyong National University) ;
  • Park, Seong-Soo (Division of Applied Chemical Engineering, Pukyong National University) ;
  • Park, Hee-Chan (School of Materials Science and Engineering, Pusan National University)
  • 김지경 (부산대학교 재료공학부) ;
  • 이상근 (부산대학교 재료공학부) ;
  • 권재율 (부산대학교 재료공학부) ;
  • 서금석 (부경대학교 응용화학공학부) ;
  • 박성수 (부경대학교 응용화학공학부) ;
  • 박희찬 (부산대학교 재료공학부)
  • Published : 2005.03.01

Abstract

Nanoscale silica powder was synthesized from $SiO_2$ precursor solution using Tetraethyl Orthosilicate (TEOS) by polyacrylamide gel method. This process was of simplicity and provided ultrafine powders at relatively low calcination temperatures because polymer network could inhibit aggregation of $SiO_2$ powder. The particle size of Si02 powder was affected by the concentration of ammonium persulphate and N, N'-methylene-bis-acrylamide(BIS) in the gel precursor. The particle size decreased with increasing ammonium persulphate and was mininum size of 10 nm at 0.01 M. Also, the size decreased with increasing BIS concentration and was 5 nm at its concentration of 0.05 M.

Tetraethyl Orthosilicate(TEOS)를 $SiO_2$ 전구체 용액으로 사용하여 Polyacrlamide gel 방법으로 나노 실리카 분말을 합성하였다. 이 gel 공정법은 비교적 간단한 중합법이며, 고분자 망상구조가 $SiO_2$의 응집을 억제하므로 비교적 낮은 하소온도에서 나노입자를 합성할수 있었다. $SiO_2$ 분말입자의 크기는 gel 전구체중의 ammonium persulphate와 N,N'-methylene-bis-acryamide(BIS)의 농도에 영향을 받았다. 실리카 입자의 크기는 ammonium persulphate의 농도가 증가할수록 작아졌으며 그 농도가 0.01M일때 가장 작은 10nm크기의 입자를 얻었다. 또한 그 입자의 크기는 BIS의 농도가 증가할수록 작아졌으며 그 높도가 0.05M일때 입자의 크기는 5nm였다.

Keywords

References

  1. J. S. Jang and H. S. Park, 'Formation and Structure of Polyacrylamide-Silica Nanocomposites by Sol-Gel Process,' J. Appl. Poly. Sci., 83 1817-23 (2002) https://doi.org/10.1002/app.10116
  2. P. Hajji, L. David, J. F. Gerard, J. P. Pascault, and G. Vigier, 'Synthesis, Structure, and Morphology of Polymer-Silica Hybrid Nanocomposites Based on Hydroxyethyl Methacrylate,' J. Poly. Sci. : Part B, 37 3172-87 (1999) https://doi.org/10.1002/(SICI)1099-0488(19991115)37:22<3172::AID-POLB2>3.0.CO;2-R
  3. K. J. Kim and J. L. White, 'Silica Agglomerate Breakdown in Three-Stage Mix Including a Continuous Ultrasonic Extruder,' J. Ind. Eng. Chem., 6 [6] 372-79 (2000)
  4. S. K. Park, K. D. Kim, and H. T. Kim, 'Synthesis of $SiO_2$ and $TiO_2$, Nanoparticeles Using Semibatch Reactor and Comparison of Parameters Effecting Particle Size and Particle Size Distribution,' J. Indust. Eng. Chem., 6 [6] 365-71 (2000)
  5. K. J. Kim and J. L. White, 'Breakdown of Silica Agglomerates and other Particles during Mixing in an Internal Mixer and their Processing Character,' J. Ind. Eng. Chem., 6 [4] 262-69 (2000) https://doi.org/10.1021/ie50063a044
  6. E. Bourgeat-Lami, P. Espiard, and A. Guyot, 'Poly(Ethyl Acrylate) Latexes Encapsulating Nanoparticles of Silica: Functionalization and Dispersion of Silica,' Polymer, 36 [23] 4385-89 (1995) https://doi.org/10.1016/0032-3861(95)96843-W
  7. P. Espiard and A. Guyot, 'Poly(Ethyl Acrylate) Latexes Encapsulating Nanoparticles of Silica: Morphology and Mechanical Properties of Reinforced Films,' Polymer, 36 [23] 4397-403 (1995) https://doi.org/10.1016/0032-3861(95)96845-Y
  8. V. Gottardi and M. Guglielmi, 'Raman and Infrared Spectra on Silica Gel Evolving toward Glass,' J. Non-Cryst. Solid, 48 [1] 117-28 (1982) https://doi.org/10.1016/0022-3093(82)90250-2
  9. R. Lingberg, J. Sjoblom, and G. Sunholm, 'Preparation of Silica Particles Utilizing the Sol-Gel and the Emulsion-Gel Processes,' Colloids & Surfaces, 99 79-88 (1995) https://doi.org/10.1016/0927-7757(95)03117-V
  10. C. J. Brinker, K. D. Keefer, D. W. Schaefef, and C. S. Ashley, 'Sol-Gel Transition in Simple Silicates,' J. Non-Cryst. Solid, 48 [1] 47-64 (1982) https://doi.org/10.1016/0022-3093(82)90245-9
  11. S. I. Choi, D. Y. Shin, S. M. Han, and S. B. Lee, 'Effect of Organic Substance in the Preparation of Porous Silica Glass by the Sol-Gel Process,' J. Kor. Ceram. Soc., 30 [10] 838-44 (1993)
  12. V. C. Costa, F. S. Lameiras, M. T. C. Sansviero, A. B. Simoes, and W. L. Vasconcelos, 'Preparation of Csd-Containing Silica-Titania Composites by the Sol-Gel Process,' J. Non-Cryst. Solid, 348 190-94 (2004) https://doi.org/10.1016/j.jnoncrysol.2004.08.167
  13. J. K. Kim, S. G. Lee, J. S. Shin, S. S. Hong, S. S. Park, and H. C. Park, 'Synthesis of Alumina Nano Particles by PAA Gel Method from Kaolin,' J. Kor. Ceram. Soc., 41 [3] 253-58 (2004) https://doi.org/10.4191/KCERS.2004.41.3.253
  14. S. S. Park, C. H. Hwang, J. K. Kim, D. H. Kim, S. G. Lee, and H. C. Park, 'Microwave Synthesis of Alumina Nano-Particles by Polymer Gel Method from Kaolin,' J. Kor. Ceram. Soc., 41 [9] 684-89 (2004) https://doi.org/10.4191/KCERS.2004.41.9.684
  15. A. Douy and P. Odier, 'The Polyacrylamide Gel : A Novel Route to Ceramic and Glassy Oxide Powders,' Mater. Res. Bull., 24 [9] 1119-26 (1989) https://doi.org/10.1016/0025-5408(89)90069-X
  16. Q. Li, L. Gao, and D. Yan, 'The Crystal Structure and Spectra of Nano-Scale YAG : $Ge^{3+}$,' Mater. Chem. & Phys., 64 41-4 (2000) https://doi.org/10.1016/S0254-0584(99)00250-3
  17. A. E. Larsen and D. G. Grier, 'Melting of Metastable Crystallites in Charge-Stabilized Collidal Suspensions,' Phys. Rev. Lett., 76 [20] 3862-65 (1996) https://doi.org/10.1103/PhysRevLett.76.3862
  18. Q. Zhao, W. Chen, and Q. Zhu, 'Self-Assembly and Characterization of Novel Amorphous $SiO_x$ (x=2.1) Quantum Dots Using Polyacrylamide Gel Networks as Template,' J. Non-Cryst. Solids, 343 163-65 (2004) https://doi.org/10.1016/j.jnoncrysol.2004.05.011