DOI QR코드

DOI QR Code

ECR플라즈마 전처리가 RuO2 MOCVD시 핵생성에 끼치는 효과

Nucleation Enhancing Effect of Different ECR Plasmas Pretreatment in the RUO2 Film Growth by MOCVD

  • 엄태종 (인하대학교 신소재공학부) ;
  • 박연규 (인하대학교 신소재공학부) ;
  • 이종무 (인하대학교 신소재공학부)
  • Eom, Taejong (Department of Advanced Materials Science and Engineering, Inha University) ;
  • Park, Yunkyu (Department of Advanced Materials Science and Engineering, Inha University) ;
  • Lee, Chongmu (Department of Advanced Materials Science and Engineering, Inha University)
  • 발행 : 2005.02.01

초록

[ $RuO_2$ ]는 DRAM과 FRAM소자에서 고유전 capacitors의 저전극물질로서 폭넓게 연구되고 있다. 본 연구에서는 XRD, SEM, AFM 분석 등을 통하여 금속유기 화학 증착법(MOCVD)으로 $RuO_2$ 증착시 핵생성에 영향을 미치는 수소, 산소, 아르곤 ECR플라즈마 전처리 효과를 조사하였으며, 아르곤 ECR플라즈마 전처리의 경우 가장 높은 핵생성 밀도를 나타내었다. ECR 플라즈마 전처리를 통한 $RuO_2$의 핵생성 향상 메카니즘은 아르곤이나 수소 ECR 플라즈마는 TiN막 표면의 질소나 산소원자를 제거하고 따라서 TiN막 표면은 Ti-rich TiN으로 바뀌게 되는 것이다.

$RuO_2$ is widely studied as a lower electrode material for high dielectric capacitors in DRAM (Dynamic Random Access Memories) and FRAM (Ferroelectric Random Access Memories). In this study, the effects of hydrogen, oxygen, and argon Electron Cyclotron Resonance (ECR) plasma pretreatments on deposited by Metal Organic Chemical Vapor Deposition (MOCVD) $RuO_2$ nucleation was investigated using X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Atomic Force Microscopy (AFM) analyses. Argon ECR plasma pretreatment was found to offer the highest $RuO_2$ nucleation density among these three pretreatments. The mechanism through which $RuO_2$ nucleation is enhanced by ECR plasma pretreatment may be that the argon or the hydrogen ECR plasma removes nitrogen and oxygen atoms at the TiN film surface so that the underlying TiN film surface is changed to Ti-rich TiN.

키워드

참고문헌

  1. W. D. Ryden, A. W. Lawson, and C. C. Saetain, 'Electrical Transport Properties of $IrO_2$ and $RuO_2$,' Phys. Rev. B, 1 1494-500 (1970) https://doi.org/10.1103/PhysRevB.1.1494
  2. L. Krusin-Elbaum, M. Wittmer, and D. S. Yee, 'Characterization of Reactively Sputtered Ruthenium Dioxide for very Large Scale Integrated Metallization,' Appl. Phys. Lett., 50 1879-81 (1987) https://doi.org/10.1063/1.97673
  3. M. Wittmer, 'Barrier Layers : Principles and Application in Micro Electronics,' J. Vac. Sci. Tech. A, 2 273-80 (1984) https://doi.org/10.1116/1.572580
  4. E. Kolawa, F. C. T. So, E. T. S. Pan, and M. A. Nicolet, 'Reactively Sputtered $RuO_2$ Diffusion Barriers,' Appl. Phys. Lett., 50 854-55 (1987) https://doi.org/10.1063/1.98012
  5. M. L. Green, M. E. Gross, L. E. Papa, K. J. Schnoes, and D. Brasen, 'Chemical Vapoe Doposition of Ruthenium and Ruthenium Dioxde Films,' J. Electrochemical. Soc., 132 [11] 2677-84 (1985) https://doi.org/10.1149/1.2113647
  6. L. A. Bursill, M. Reaney, D. P. Vijay, and S. B. Desu, 'Comparison of Lead Zirconate Titanate Thin Films on Ruthenium Oxide and Platinum Electrodes,' J. Appl. Phys., 75 1521-25 (1994) https://doi.org/10.1063/1.356388
  7. H. N. Al-Shareef, K. R. Bellur, A. I. Kingon, and O. Auciello, 'Influence of Platinum Interlayers on the Electrical Properties of $RuO_2$/Pb($Zr_{0.53}Ti_{0.47}$)$O_3$/$RuO_2$ Capacitor Heterostructures,' Appl. Phys. Lett., 66 239-41 (1995) https://doi.org/10.1063/1.113558
  8. K. Takemura, T. Sakuma, and Y. Miyasada, 'High Dielectric Constant (Ba,Sr)$TiO_3$ Thin Films Prepared on $RuO_2$/Sapphire,' Appl. Phys. Lett., 64 2967-99 (1994) https://doi.org/10.1063/1.111396
  9. J. G. Lee, S. K. Min, and S. H. Choh, 'Deposition and Properties of Reactively Sputtered Ruthenium Dioxide Thin Films as an Electrode for Ferroelectric Capacitors,' Jpn. J. Appl. Phys., 33 7080-85 (1994) https://doi.org/10.1143/JJAP.33.7080
  10. S. D. Bernstein, T. Y. Wong, Y. Y. Kisler, and R. W. Tustison, 'Fatigue of Ferroelectric Pb$Zr_xTi_yO_3$ Capacitors with Ru and $RuO_x$ Electrodes,' J. Mater. Res., 8 12-3 (1993) https://doi.org/10.1557/JMR.1993.0012
  11. Q. X. Jia, L. H. Chang, and W. A. Anderson, 'Surface and Interface Properties of Ferroelectric $BaTiO_3$ Thin Films on Si Using $RuO_2$ as an Electrode,' J. Mater. Res., 9 2561-65 (1994) https://doi.org/10.1557/JMR.1994.2561
  12. Q. X. Jia, Z. Q. Shi, K. L. Jiao, W. A. Anderson, and F. M. Collins, 'Reactively Sputtered $RuO_2$ Thin Film Resistor with Near Zero Temperature Coefficient of Resistance,' Thin Solid Films, 196 29-34 (1991) https://doi.org/10.1016/0040-6090(91)90171-S
  13. Q. X. Jia, K. L. Jiao, W. A. Anderson, and F. M. Collins, 'Development and Fabrication of $RuO_2$ Thin Film Resistors,' Mat. Sci. Eng. B, 18 220-25 (1993) https://doi.org/10.1016/0921-5107(93)90135-A
  14. D. S. Yoon, J. S. Roh, S. M. Lee, and H. K. Baik, 'Alteration for a Diffusion Barrier Design Concept in Future High-Density Dynamic and Ferroelectric Random Access Memory Devices,' Progress in Mater. Sci., 48 275-371 (2003) https://doi.org/10.1016/S0079-6425(02)00012-9
  15. H. Kim, J. Lee, C. Park, and Y. Park, 'Surface Characterization of $O_2$-Plasma- Treated Indium-Tin-Oxide (ITO) Anodes for Organic Light-Emitting-Device Applications,' J. Kor. Phys. Soc., 41 [3] 395-99 (2002)
  16. C. Lee, M. G. Park, H. Jeon, and T. H. Ahn, 'Removal of Cu Contaminants from Si Surfaces Using Dry Cleaning Techniques,' J. Kor. Phys. Soc., 30 [91] 292-96 (1997)
  17. K. Choi and C. Lee, 'Removal Eciency of Organic Contaminants Using ECR $H_{2}$ Plasma and ECR $O_2$ Plasma,' J. Kor. Phys. Soc., 42 [92] 702-07 (2003)
  18. W. Park and C. M. Lee, 'Plasma Pretreatments for Cu-MOCVD,' Mater. Sci. and Eng. B, 85 80-4 (2001) https://doi.org/10.1016/S0921-5107(01)00650-X
  19. S. Y. Mar, J. S. Liang, C. Y. Sun, and Y. S. Huang, 'Grain Boundary Scattering in Ruthenium Dioxide Thin Films,' Thin Solid Films, 238 158-62 (1994) https://doi.org/10.1016/0040-6090(94)90667-X