Enhanced Lovastatin Production by Solid State Fermentation of Monascus ruber

  • Xu Bao-Jun (Department of Food Science and Technology, College of Agriculture and Biotechnology Chungnam National University, The pharmaceutical Institute, Dalian University) ;
  • Wang Qi-Jun (College of Food and Bioengineering, South China University of Technology) ;
  • Jia Xiao-Qin (Department of Food Science and Technology, College of Agriculture and Biotechnology Chungnam National University) ;
  • Sung Chang-Keun (Department of Food Science and Technology, College of Agriculture and Biotechnology Chungnam National University)
  • 발행 : 2005.02.01

초록

The purpose of this study was to optimize the solid state cultivation of Monascus ruber on sterile rice. A single-level-multiple-factor and a single-factor-multiple-level experimental design were employed to determine the optimal medium constituents and to optimize carbon and nitrogen source concentrations for lovastatin production. Simultaneous quantitative analyses of the ${\beta}$-hydroxyacid form and ${\beta}$-hydroxylactone for of lovastatin were performed by the high performance liquid chromatography (HPLC) method with a UV photodiode-array (PDA) detector. The total lovastatin yield ($4{\sim}6\;mg/g$, average of five repeats) was achieved by adding soybean powder, glycerol, sodium nitrate, and acetic acid at optimized levels after 14 days of fermentation. The maximal yield of lovastatin under the optimal composition of the medium increased by almost 2 times the yield observed prior to optimization. The experimental results also indicated that the ${\beta}$-hydroxylactone form of lovastatin (LFL) and the ${\beta}$-hydroxyacid form of lovastatin (AFL) simultaneously existed in solid state cultures of Monascus ruber. while the latter was the dominant form in the middle-late stage of continued fermentation. These results indicate that optimized culture conditions can be used for industrial production of lovastatin to obtain high yields.

키워드

참고문헌

  1. Alberts, A. W., J. Chen, G. Kuron, V. Hunt, and C. Hoffman (1980) Mevinolin: A highly potent competitive inhibitor of hydroxymethyl-glutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proc. Natl. Acad. Sci. USA. 77: 3957-3961 https://doi.org/10.1073/pnas.77.7.3957
  2. Endo, A., M. Kuroda, and Y. Tsujita (1976) ML-236 A, ML-236 B and ML-236 C, a new inhibitors of cholesterogenesis produced by Penicillium citrinum. J. Antibiot. 29: 1346-1349 https://doi.org/10.7164/antibiotics.29.1346
  3. Endo, A (1979) Monacolin K, a new hypocholesterolemic agent produced by a Monascus sp. J. Antibiot. 32: 852-854 https://doi.org/10.7164/antibiotics.32.852
  4. Gbewonyo, K., G. Hunt, and B. Buckland (1992) Interaction of cell morphology and transport process in the lovastatin fermentation. Bioprocess Eng. 8: 1-7 https://doi.org/10.1007/BF00369257
  5. Gunde-Cimerman, N., A. Plemenitas, and A. Cimerman (1993) Pleurotus fungi produce mevinolin, an inhibitor of HMG CoA reductase. FEMS Microbiol. Lett. 113: 333-338 https://doi.org/10.1111/j.1574-6968.1993.tb06536.x
  6. Kumar, M. S., S. K. Jana, V. Senthil, V. Shashanka, S.V. Kumar, and A. K. Sadhukhan (2000) Repeated fed-batch process for improving lovastatin production. Process Biochem. 36: 363-368 https://doi.org/10.1016/S0032-9592(00)00222-3
  7. Lai, L. S., C. M. Kuo, and S. Y. Tsai (2001) Influence of increased dissolved oxygen tensions by agitation on the secondary metabolite production by a mutant of Aspergillus terreus in a 5-L fermentor. J. Chin. Inst. Chem. Eng. 2: 135-142
  8. Casas, L. J. L., P. J. A. Sanchez, S. J. M. Fernandez, F. F. G. Acien, G. E. Molina, and Y. Chisti (2003) Production of lovastatin by Aspergillus terreus: Effects of the C:N ratio and the principal nutrients on growth and metabolite production. Enzyme Microb. Technol. 33: 270-277 https://doi.org/10.1016/S0141-0229(03)00130-3
  9. Lai, L. S., C. C. Pan, and B. K. Tzeng (2003) The influence of medium design on lovastatin production and pellet formation with a high-producing mutant of Aspergillus terreus in submerged cultures. Process Biochem. 38: 1317-1326 https://doi.org/10.1016/S0032-9592(02)00330-8
  10. Kimura, K., D. Komagata, S. Murakawa and A. Endo. () Biosynthesis of monacolins: Conversion of monacolin J to monacolin K. J. Antibiot. 43: 1621-1622 https://doi.org/10.7164/antibiotics.43.1621
  11. Chang, Y. N., J. C. Huang, C. C. Lee, I. L. Shih, and Y. M. Tzeng (2002) Use of response surface methodology to optimize culture medium for production of lovastatin by Monascus ruber. Enzyme Microb. Technol. 30: 889-894 https://doi.org/10.1016/S0141-0229(02)00037-6
  12. Li, C., Y. Zhu, Y. Wang, J. S. Zhu, J. Chang, and D. Kritchevsky (1998) Monascus purpureus-fermented rice (red yeast rice): A natural food product that lowers blood cholesterol in animal models of hypercholesterolemia. Nutr. Res. 18: 71-81 https://doi.org/10.1016/S0271-5317(97)00201-7
  13. Heber, D., L. Yip, J. M. Ashely, D. A. Elashoff, R. M. Elashoff, and V. L. W. Go (1999) Cholesterol lowering effects of a proprietary Chinese red-yeast-rice dietary supplement. Am. J. Clin. Nutr. 69: 231–236
  14. Wang, Q. J. (2003) Fermentology. Ph.D. Thesis. Chungnam National University, Daejon, Korea
  15. Moon, Y. J., Q. J. Wang, B. J. Xu, C. T. Li, J. H. Kim, E. K. Mo, S. Y. Baek, I. Kwon, and C. K. Sung (2001) Simultaneous analysis of both lactone form and acid form monacolin K in red yeast rice by RP-HPLC. Korean J. Food Nutr. 14: 521-526
  16. Manzom, M., M. Roilini, S. Bergomi, and V. Cavazzoni (1998) Production and purification of statins from Aspergillus terreus strains. Biotechnol. Tech. 12: 529-532 https://doi.org/10.1023/A:1008851430560
  17. Matilde, M., B. Silvia, R. Manuela, and C. Valeria (1999) Production of statins by filamentous fungi. Biotechnol. Lett. 21: 253-257 https://doi.org/10.1023/A:1005495714248
  18. Wagschal, K., Y. Yoshizawa, D. J. Witter, Y. Liu, and J. C. Vederas (1996) Biosynthesis of ML-236C and the hypocholesterolemic agents compactin by Penicillium aurantiogriseum and lovastatin by Aspergillus terreus: Determination of the origin of carbon, hydrogen and oxygen atoms by $^{13}C$ NMR spectrometry and observation of unusual labeling of acetate-derived oxygens by $^{18}O_2$. J. Chem. Soc. Perkin Trans 1: 2357-2363 https://doi.org/10.1039/p19960002357
  19. Lee, H., C. R. Davis, R. Claudia, D. K. Nguyen, T. Aldrich, P. C. McAda, and D. R. Christopher (1999) Lovastatin biosynthesis in Aspergillus terreus: Characterization of blocked mutants, enzyme activities and a multifunctional polyketide synthase gene. Chem. Biol. 6: 429-439 https://doi.org/10.1016/S1074-5521(99)80061-1
  20. Kennedy, J., K. Auclair, S. G. Kendrew, C. Park, J. C. Vederas, and C. R. Hutchinson (1999) Modulation of polyketide synthase activity by accessory proteins during lovastatin biosynthesis. Science 284: 1368-1372 https://doi.org/10.1126/science.284.5418.1368