Evaluation of Different Culture Conditions of Clostridium bifermentans DPH-1 for Cost Effective PCE Degradation

  • Humayra Afroze Syeda (United Graduate School of Agricultural Science, Gifu University) ;
  • Hasegawa Yuki (Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University) ;
  • Nomura Izumi (Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University) ;
  • Chang Young C. (United Graduate School of Agricultural Science, Gifu University) ;
  • Sato Takeshi (Department of Civil Engineering, Gifu University) ;
  • Takamizawa Kazuhiro (United Graduate School of Agricultural Science, Gifu University, Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University)
  • 발행 : 2005.02.01

초록

Clostridium bifermentans strain DPH-1 has already been found to dechlorinate perchloroethylene (PCE) to cis-dichloroethylene (cis-DCE) via trichloroethylene (TCE). In this study, our investigation on different culture conditions of this DPH-1 strain was extended to find a more efficient and cost effective growth medium composition for this DPH-1 strain in bioremediation practices. Temperature dependency of strain DPH-1 showed that the growth starting time and PCE degradation at $15^{\circ}C$ was very slow compared to that of $30^{\circ}C$, but complete PCE degradation occurred in both cases. For the proper utilization of strain DPH-1 in more cost effective bioremediation practices, a simpler composition of an effective media was studied. One component of the culture medium, yeast extract, had been substituted by molasses, which served as a good source of electron donor. The DPH-1 strain in the medium containing molasses, in the presence of $K_{2}HPO_4\;and\;KH_{2}PO_4$, showed identical bacterial multiplication (0.135 mg protein $mL^{-1}h^{-1}$) and PCE degradation rates ($0.38\;{\mu}M/h$) to those of the yeast extract containing medium.

키워드

참고문헌

  1. Neumann, A., G. Wohlfarth, and G. Diekert (1995) Properties of tetrachloroethene dehalogenase of Dehalospirillum multivorans. Arch. Microbiol. 163: 276-281 https://doi.org/10.1007/BF00393380
  2. Distefano, T. D. (1999) The effect of tetrachloroethylene on biological dechlorination of vinyl chloride: Potential implication for natural bioattenuation. Water Res. 33: 1688-1694 https://doi.org/10.1016/S0043-1354(98)00374-1
  3. Fetzner, S. (1998) Bacterial dehalogenation. Appl. Micobiol. Biotechnol. 50: 633-657 https://doi.org/10.1007/s002530051346
  4. U.S. Environmental Protection Agency (1985) Substances Found at Proposed and Final NPL Sites Through Update Number Three. Document NPL-U3-6-3. US Environmental Protection Agency, Washington, D.C., USA
  5. Infante, P. F. and T. A. Tsongas (1982) Mutagenic and oncogenic effects of chloromethanes, chloroethanes, and halogenated analogs of vinyl chloride. Environ. Sci. Res. 25: 301-327
  6. Okeke, B. C., A. Paterson, J. E. Smith, and I. A. Watson- Craik (1997) Comparative biotransformation of pentachlorophenol in soils by solid substrate cultures of Lentinula edodes. Appl. Microbiol. Biotechnol. 48: 563-569 https://doi.org/10.1007/s002530051097
  7. Ensley, B. D. (1991) Biochemical diversity of trichloroethylene metabolism. Annu. Rev. Microbiol. 45: 283-299 https://doi.org/10.1146/annurev.mi.45.100191.001435
  8. de Bruin, W. P., M. J. J. Kotterman, M. A., Posthumus, G., Schraa, and A. J. B. Zehnder (1992) Complete biological reductive transformation of tetrachloroethene to ethane. Appl. Environ. Microbiol. 58: 1996-2000
  9. Holliger, C., G. Schraa, A. J. M., Stams, and A. J. B. Zehnder (1993) A highly purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growth. Appl. Environ. Microbiol. 59: 2991-2997
  10. Maymo-Gatell, X., V. Tandoi, J. M. Gossett, and S. H. Zinder (1995) Characterization of an $H_2$-utilizing enrichment culture that reductively dechlorinates tetrachloroethene to vinyl chloride and ethane in the absence of methanogenesis and acetogenesis. Appl. Environ. Microbiol. 61: 3928-3933
  11. Neumann, A., H. Scholz-Muramatsu, and G. Diekert (1994) Tetrachloroethene metabolism of Dehalospirillum multivorans. Arch. Microbiol. 162: 295-301 https://doi.org/10.1007/BF00301854
  12. Miller, E., G. Wohlfarth, and G. Diekert (1997) Comparative studies on tetrachloroethene reductive dechlorination mediated by Desulfitobacterium sp. Strain PCE-S. Arch. Microbiol. 168: 513-519 https://doi.org/10.1007/s002030050529
  13. Fathepure, B. Z., J. P. Nengu, and S. A. Boyd (1987) Anaerobic bacteria that dechlorinate perchloroethylene. Appl. Environ Microbiol. 53: 2671-2674
  14. Schumacher, W. and C. Holliger (1996) The proton electron ratio of the menaquinone-dependent electron transport from dihydrogen to tetrachloroethene in Dehalobacter restrictus. J. Bacteriol. 178: 2328-2333 https://doi.org/10.1128/jb.178.8.2328-2333.1996
  15. Maymo-Gatell, X., Y. Chien, J. M. Gossett, and S. H. Zinder (1997) Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276: 1568-1571 https://doi.org/10.1126/science.276.5318.1568
  16. Magnuson, J. K., R. V. Stern, J. M. Gossett, S. H. Zinder, and D. R. Burris (1998) Reductive dechlorination of tetrachloroethene to ethene by a two component enzyme pathway. Appl. Environ. Microbiol. 64: 1270-1275
  17. Miller, E., G. Wohlfarth, and G. Diekert (1998) Purification and characterization of the tetrachloroethene reductive dehalogenase of strain PCE-S. Arch. Microbiol. 169: 497-502 https://doi.org/10.1007/s002030050602
  18. Suayama, A. M., S. Yamashita, S. Yoshino, and K. Furukawa (2002) Molecular characterization of the PceA reductive dehalogenase of Desulfitobacterium sp. strain Y51. J. Bacteriol. 184: 3419-3425 https://doi.org/10.1128/JB.184.13.3419-3425.2002
  19. Malachowsky, K. J., T. J. Phelps, A. B. Teboli, D. E. Minnikin, and D. C. White (1994) Aerobic mineralization of trichloroethylene, vinyl chloride and aromatic compounds by Rhodococcus species. Appl. Environ. Microbiol. 60: 542-548
  20. Vanneli, T., M. Logan, D. M. Arciero, and A. B. Hooper (1990) Degradation of halogenated aliphatic compounds by the ammonia-oxidizing bacterium Nitrosomonas europaea. Appl. Environ. Microbiol. 60: 542-548
  21. Chang, Y. C., M. Hatsu, K. Jung, Y. S. Yoo, and K. Takamizawa (2000) Isolation and characterization of a tetrachloroethylene dechlorinating bacterium, Clostridium bifermentans DPH-1. J. Biosci. Bioeng. 89: 489-491 https://doi.org/10.1016/S1389-1723(00)89102-1
  22. Gossett, J. M. (1987) Measurement of Henry's law constants for C1 and C2 chlorinated hydrocarbons. Environ. Sci. Technol. 21: 202-208 https://doi.org/10.1021/es00156a012
  23. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  24. Okeke, B. C., Y. C. Chang, M. Hatsu, T. Suzuki, and K. Takamizawa (2001) Purification and cloning, and sequencing of an enzyme mediating the reductive dechlorination of tetrachloroethylene (PCE) from Clostridium bifermentans DPH-1. Can. J. Microbiol. 47: 448-456 https://doi.org/10.1139/cjm-47-5-448
  25. Pietari, J. M. H. (1999) Development and Characterization of a Psychotropic Dechlorinating Culture and Temperature Response of a Mesophilic Dechlorinating Culture. M.S. Thesis. University of Washington, WA, USA
  26. Harkness, M. R., A. A. Bracco, M. J. Jr. Brennan, K. A. DeWeerd, and J. L. Spivack, (1999) Use of Bioaugmentation to stimulate complete reductive dechlorination of trichloroethene in Dover soil columns. Environ. Sci. Technol. 33: 1100-1109 https://doi.org/10.1021/es9807690
  27. Ellis, D. E., E. J. Lutz, R .J. Odom, Jr. Buchanan, M. D. Lee, C. L. Bartlett, M. R. Harkness, and K. A. Deweered (2000) Bioaugmentation for accelerated in situ anaerobic bioremediation. Environ. Sci. Technol. 34: 2254-2260 https://doi.org/10.1021/es990638e
  28. Chang, Y. C., M. Hatsu, K. Jung, Y. S. Yoo, and K. Takamizawa (2000) Degradation of a variety of halogenated aliphatic compounds by an anaerobic mixed culture. J. Ferment. Bioeng. 86: 410-412 https://doi.org/10.1016/S0922-338X(99)89015-1
  29. Harkness, M. R. (2000) Economic considerations in enhanced aerobic biodegradation. pp. 9-14. In: G. B. Wickramananyake, A. R. Gavaskar, B. C. Alleman, and V. S. Magar (eds.). Bioremediation and Phytoremediation of Chlorinated and Recalcitrant Compounds. Battelle Press, Columbus, OH, USA
  30. Silva, H. J., A. M. Giulietti, R. F. Segovia, and R. J. Ertola (1982) Use of molasses and whey in culture media for the development and production of a toxin from Clostridium perfringens type D. Rev. Argent. Microbiol. 14: 85-90
  31. Bradley, P. M., F. H. Chapelle, and D. R. Lovley (1998) Humic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroethene. Appl. Environ. Microbiol. 64: 3102-3105
  32. Ni, S., J. K. Fredrickson, and L. Xun (1995) Purification and characterization of a novel 3-chlorobenzoate-reductive dehalogenase from the cytoplasmic membrane of Desulfomonile tiedjei DCB-1. J. Bacteriol. 177: 5135-5139 https://doi.org/10.1128/jb.177.17.5135-5139.1995
  33. Sung, Y., K. M. Ritalahti, R. A. Sanford, J. W. Urbance, S. J. Flynn, J. M. Tiedje, and F. E. Loffler (2003) Characterization of two tetrachloroethene-reducing, acetate-oxidizing anaerobic bacteria and their description as Desulfuromonas michiganensis sp. Appl. Environ. Microbiol. 69: 2964- 2974 https://doi.org/10.1128/AEM.69.5.2964-2974.2003