Recovery of Trichloroethylene Removal Efficiency through Short-term Toluene Feeding in a Biofilter Enriched with Pseudomonas putida F1

  • Jung In-Gyung (Industrial Liaison Research Institute, Kyung Hee University) ;
  • Park Ok-Hyun (Department of Environment Engineering, Busan National University) ;
  • Woo Hae-Jin (Department of Environment Engineering, Busan National University) ;
  • Park Chang-Ho (Industrial Liaison Research Institute, Kyung Hee University, Department of Chemical Engineering, Kyung Hee University)
  • Published : 2005.02.01

Abstract

Trichloroethylene (TCE) is an environmental contaminant provoking genetic mutation and damages to liver and central nerve system even at low concentrations. A practical scheme is reported using toluene as a primary substrate to revitalize the biofilter column for an extended period of TCE degradation. The rate of trichloroethylene (TCE) degradation by Pseudomonas putida F1 at $25^{\circ}C$ decreased exponentially with time, without toluene feeding to a biofilter column ($11\;cm\;I.D.{\times}95\;cm$ height). The rate of decrease was 2.5 times faster at a TCE concentration of $970\;{\mu}g/L$ compared to a TCE concentration of $110\;{\mu}g/L$. The TCE itself was not toxic to the cells, but the metabolic intermediates of the TCE degradation were apparently responsible for the decrease in the TCE degradation rate. A short-term (2 h) supply of toluene ($2,200\;{\mu}g/L$) at an empty bed residence time (EBRT) of 6.4 min recovered the relative column activity by $43\%$ when the TCE removal efficiency at the time of toluene feeding was $58\%$. The recovery of the TCE removal efficiency increased at higher incoming toluene concentrations and longer toluene supply durations according to the Monod type of kinetic expressions. A longer duration ($1.4{\sim}2.4$ times) of toluene supply increased the recovery of the TCE removal efficiency by $20\%$ for the same toluene load.

Keywords

References

  1. Oldenhuis, R., J. Y. Odedzes, J. J. Waarde, and D. B. Janssen (1991) Kinetics of chlorinated hydrocarbon degradation by Methylosinus trichlorosporium OB3b and toxicity of trichloroethylene. Appl. Environ. Microbiol. 57: 7-14
  2. Cox, C. D., H. J. Woo, and K. G. Robinson (1998) Cometabolic biodegradation of trichloroethylene (TCE) in the gas phase. Water Sci. Technol. 37: 97-104 https://doi.org/10.1016/S0273-1223(98)00239-X
  3. Nakamura, Y., M. Daidai, and F. Kobayashi (2004) Bioremediation of phenolic compounds having endocrinedisrupting activity using ozone oxidation and activated sludge treatment. Biotechnol. Bioprocess Eng. 9: 151-155 https://doi.org/10.1007/BF02942285
  4. Kim, J.-H., W.-H. Jeong, T. B. Karegoudar, and C.-K. Kim (2002) Stable degradation of benzoate by Klebsiella oxytoca C302 immobilized in alginate and polyurethane. Biotechnol. Bioprocess Eng. 7: 347-351 https://doi.org/10.1007/BF02933519
  5. Kleopfer, R. D., D. M. Easley, B. B. Hass, Jr. T. G. Deihl, D. E. Jackson, and F. P. Guengerich (1985) Anaerobic degradation of trichloroethylene in soil. Environ. Sci. Technol. 19: 277-280 https://doi.org/10.1021/es00133a012
  6. Vogel, T. M. and P. McCarty (1986) Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions. Appl. Environ. Microbiol. 49: 1080-1083
  7. Speital, G. E. Jr. and D. S. McLay (1993) Biofilm reactors for treatment of gas stream containing chlorinated solvents. J. Environ. Eng.-ASCE. 119: 658-678 https://doi.org/10.1061/(ASCE)0733-9372(1993)119:4(658)
  8. Dolasa, A. R. and S. J. Ergas (1999) Membrane bioreactor for cometabolism of trichloroethene air emissions. J. Environ. Eng.-ASCE. 126: 969-973 https://doi.org/10.1061/(ASCE)0733-9372(2000)126:10(969)
  9. Arciero, D., T. Vannelli, M. Logan, and A. B. Hooper (1989) Degradation of trichloroethylene by the ammoniaoxidizing bacterium Nitrosomonas europaea. Biochem. Bioph. Res. Co. 159: 640-643 https://doi.org/10.1016/0006-291X(89)90042-9
  10. Hyman, M. R., S. A. Russell, R. L. Ely, K. J. Williamson, and D. J. Arp (1995) Inhibition, inactivation, and recovery of ammonia-oxidizing activity in cometabolism of trichloroethylene by Nitrosomonas europaea. Appl. Environ. Microbiol. 61: 1480-1487
  11. Chang, H. L. and L. Alvarez-Cohen (1997) Two stage methanotrophic bioreactor for the treatment of chlorinated organic wastewater. Water Res. 31: 2026-2036 https://doi.org/10.1016/S0043-1354(97)00020-1
  12. Pressman, J. G., G. Georgiou, and G. E. Speital (1999) Demonstration of efficient trichloroethylene biodegradation in a hollow fiber membrane bioreactor. Biotechnol. Bioeng. 62: 681-692 https://doi.org/10.1002/(SICI)1097-0290(19990320)62:6<681::AID-BIT7>3.0.CO;2-1
  13. Sukesan, S. and M. E. Watwood (1997) Continuous vapor- phase trichloroethylene biofiltration using hydrocarbon- enriched compost as filtration matrix. Appl. Microbiol. Biotechnol. 48: 671-676 https://doi.org/10.1007/s002530051114
  14. Lackey, L. W., J. R. Gamble, and J. L. Boles (2002) Bench-scale evaluation of a biofiltration system used to mitigate trichloroethylene contaminated air streams. Adv. in Environ. Res. 7: 97-104 https://doi.org/10.1016/S1093-0191(01)00111-3
  15. Ely, R. L., K. J. Williamson, R. B. Guenther, M. R. Hyman, and D. J. Arp (1995) A cometabolic kinetics model incorporation enzyme inhibition, inactivation, and recovery: I. Model development, analysis, and testing. Biotechnol. Bioeng. 46: 218-231 https://doi.org/10.1002/bit.260460305
  16. Ely, R. L., M. R. Hyman, D. J. Arp, R. B. Guenther, and K. J. Williamson (1995) A cometabolic kinetics model incorporation enzyme inhibition, inactivation, and recovery: II. Trichloroethylene degradation experiments. Biotechnol. Bioeng. 46: 232-245 https://doi.org/10.1002/bit.260460306
  17. Zhang, X. H. and R. K. Bajpai (2000) A comprehensive model for the cometabolism of chlorinated solvents. J. Environ. Sci. Health. A35: 229-244 https://doi.org/10.1080/10934520009376966
  18. Stainer, R. Y., N. J. Palleroni, and M. Doudoroff (1966) The aerobic Pseoudomonas: a taxonomic study. J. Gen. Appl. Microbiol. 43: 159-171 https://doi.org/10.1099/00221287-43-2-159
  19. Lenore, S. C., E. G. Arnold, and D. E. Andrew (1998) Standard Methods for the Examination of Water and Wastewater. 18th ed., American Public Health Association Press, Washington DC, USA
  20. Li, S. and L. P. Wackett (1992). Trichloroethylene oxidation by toluene dioxygenase. Biochem. Bioph. Res. Co. 185: 443-451 https://doi.org/10.1016/S0006-291X(05)81005-8
  21. Wackett, L. P. and D. Gibson (1988) Degradation of trichloroethylene by toluene dioxygenase in whole cell studies with Pseudomonas putida F1. Appl. Environ. Microbiol. 54; 1703-1708
  22. Wackett, L. P. and S. R. Householder (1989) Toxicity of trichloroethylene to Pseudomonas putida F1 is mediated by toluene dioxygenase. Appl. Environ. Microbiol. 55: 2723-2725