Construction of CpG Motif-enriched DNA Vaccine Plasmids for Enhanced Early Immune Response

  • Park Young Seoub (Interdisciplinary Program for Biochemical Engineering and Biotechnology, Seoul National University) ;
  • Hwang Seung Ha (School of Chemical Engineering, Seoul National University) ;
  • Choi Cha-Yong (Interdisciplinary Program for Biochemical Engineering and Biotechnology, Seoul National University, School of Chemical Engineering, Seoul National University)
  • 발행 : 2005.02.01

초록

A DNA vaccine methodology using eukaryote expression vectors to produce immunizing proteins in the vaccinated hosts is a novel approach to the development of vaccine and immuno-therapeutics, and it has achieved considerable success over several infectious diseases and various cancers. To further enhance its efficiency, attempts were made to develop novel plasmid vectors containing multiple immunostimulatory CpG motifs, for rapid and strong immune response. First, a 2.9 kb compact plasmid vector (pVAC), containing CMV promoter, polycloning site, BGH poly(A) terminator, ampicillin resistance gene and pBR322 origin was constructed. A pVAC-hEPO was also constructed, which contained a human erythropoietin gene, for evaluating the transfection efficiency of naked plasmid DNA both in vitro and in vivo. To examine the adjuvant effect of multi-CpG motifs on naked plasmid DNA, 22 and 44 enriched and unmethylated CpG motifs were introduced into pVAC to generate pVAC-ISS1 and pVAC-ISS2, respectively. $100{\mu}g$ of pSecTagB, pVAC, pVAC-ISS1 or pVAC-ISS2 were each injected intramuscularly into the tibilias anterior muscle of Balb/c mice. The level of interleukin-6 induced in the mice injected with pVAC-ISS1 and pVAC-ISS2 were significantly elevated after 12 hours, which were almost 2 and 2.5 times higher than that in the mice injected with pSecTagB, respectively. These results suggest that DNA vaccine plasmids with enriched CpG motifs can induce rapid secretion of interleukin-6 by lymphocytes. In conclusion, these vectors can contribute to the development of adjuvant-free DNA vaccinations against infectious diseases and various cancers.

키워드

참고문헌

  1. Hele, T., C. Maripat, R. Mark, and R. Eyal (1998) Gene vaccination: Plasmid DNA is more than just a blueprint. Immunol. Today 19: 89-97 https://doi.org/10.1016/S0167-5699(97)01201-2
  2. Harriet, L. and C. A. T. Celia (1997) DNA vaccines. Semin. Immunol. 9: 271-283 https://doi.org/10.1006/smim.1997.0083
  3. Lindsay, W., R. Fernando, Z. Jie, and E. H. Daniel (1999) DNA immunization: Mechanistic studies. Vaccine 17: 1612-1619 https://doi.org/10.1016/S0264-410X(98)00418-6
  4. Yoshtsugu, K., X. Ke-Qin, O. Takaki, H. Kenji, O. Tomohiro, S. Kaori, O. Tomomi, H. Yuka, J. Nao, N. Masatoshi, K. Dennis, and O. Kenji (2002) Adjuvant effect of multi- CpG motifs on an HIV-1 DNA vaccine. Vaccine 20: 2857- 2865 https://doi.org/10.1016/S0264-410X(02)00238-4
  5. Shin, S., T. Fumihiko, X. Ke-Qin, I. Norihisa, and O. Kenji (2003) Technical issues in construction of nucleic acid vaccines. Methods 31: 199-206 https://doi.org/10.1016/S1046-2023(03)00134-8
  6. Yi, A. K., D. M. Klinman, T. L. Martin, S. Matson, and A. Krieg (1996) Rapid immune activation by CpG motifs in bacterial DNA: Systemic induction of IL-6 transcription through an antioxidant-sensitive pathway. J. Immunol. 157: 5394-5402
  7. Krieg, A. M., A. K. Yi, S. Matson, T. J Waldschmidt, G. A. Bishop, R. Teasdale, G. A. Koretzky, and D. M. Klinman (1995) CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374: 546-549 https://doi.org/10.1038/374546a0
  8. Benjamin, L. E. and B. Franklin (1999) Regulation of the erythropoietin gene. Blood 94: 1864-1877
  9. Kendall, R. G. (2001) Erythropoietin. Clin. Lab. Haematol. 23: 71-80 https://doi.org/10.1046/j.1365-2257.2001.00351.x
  10. Klinman, D. M., J. Conover, J. M. Leiden, A. S. Rosenberg, and J. M. Sechler(1999) Safe and effective regulation of hematocrit by gene gun administration of an erythropoietin- encoding DNA plasmid. Hum. Gene Ther. 10: 659-665 https://doi.org/10.1089/10430349950018733
  11. Duchen, L. W., B. J. Excell, R. Patel, and B. Smith (1974) Changes in motor end-plates resulting from muscle fiber necrosis and regeneration: A light and electron microscopic study of the effects of the depolarizing fraction (cardiotoxin) of Dendroaspis jamesoni venom. J. Neurol. Sci. 21: 391-417 https://doi.org/10.1016/0022-510X(74)90041-0
  12. Herrera, A. B., E. G. Rodriguez, T. Hernandez, B. Sandez, and C. A. Duarte (2000) A family of compact plasmid vectors for DNA immunization in humans. Biochem Biophys. Res. Commun. 279: 548-551 https://doi.org/10.1006/bbrc.2000.4000
  13. Nicole, A., R. Doria, and L. H. Nancy (2003) DNA vaccine strategies: Candidates for immune modulation and immunization regimens. Methods 31: 207-216 https://doi.org/10.1016/S1046-2023(03)00135-X
  14. Ronald, K. S. (2000) The role of CpG motifs in immunostimulation and gene therapy. Adv. Drug Deliv. Rev. 44: 119-134 https://doi.org/10.1016/S0169-409X(00)00090-9
  15. Klinman, D. M. and A. K. Yi (1996) CpG motifs present in bacterial DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon $\gamma$. Proc. Natl. Acad. Sci. USA 93: 2879-2883 https://doi.org/10.1073/pnas.93.7.2879
  16. Klinman, D. M., G. Yamshchikov, and Y. Ishgatsubo (1997) Contribution of CpG motifs to the immunogenicity of DNA vaccines. J. Immunol. 158: 3635-3639
  17. Tripathy, S. K., E. C. Svensson, H. B. Black, E. Goldwasser, M. Margalith, P. M. Hobart, and J. M. Leiden (1996) Long-term expression of erythropoietin in the systemic circulation of mice after intramuscular injection of a plasmid DNA vector. Proc. Natl. Acad. Sci. USA 93: 10876-10880 https://doi.org/10.1073/pnas.93.20.10876
  18. Mennuni, C., F. Calvaruso, I. Zampaglione, G. Rizzuto, D. Rinaudo, E. Dammassa, G. Ciliberto, E. Fattori, and N. La Monica (2002) Hyaluronidase increases electrogene transfer efficiency in skeletal muscle. Hum. Gene Ther. 13: 355-365 https://doi.org/10.1089/10430340252792495
  19. Mir, L. M., M. F. Bureau, J. Gehl, R. Rangara, D. Rouy, J. M. Caillaud, P. Delaere, D. Branellec, B. Schwartz, and D. Scherman (1999) High-efficiency gene transfer into skeletal muscle mediated by electric pulses. Proc. Natl. Acad. Sci. USA 96: 4262-4267 https://doi.org/10.1073/pnas.96.8.4262
  20. Y. Perrie, P. M. Frederik, and G. Gregoriadis (2001) Liposome- mediated DNA vaccination: The effect of vesicle composition. Vaccine 19: 3301-3310 https://doi.org/10.1016/S0264-410X(00)00432-1
  21. Lee, H. S., J. H. Jeong, J. H. Lee, and T. G. Park (2001) Enhancing transfection efficiency using polyethylene glycol grafted polyethylenimine and fusogenic peptide. Biotechnol. Bioprocess Eng. 6: 269-273 https://doi.org/10.1007/BF02931988
  22. Kim, Y. J., T. W. Kim, H. S. Chung, I. C. Kwon, and S. Y. Jeong (2001) Counterion effects on transfection activity of cationic lipid emulsion. Biotechnol. Bioprocess Eng. 6: 279-283 https://doi.org/10.1007/BF02931990