Recent Advances in Bacterial Cellulose Production

  • Shoda Makoto (Chemical Resources Laboratory, Tokyo Institute of Technology) ;
  • Sugano Yasushi (Chemical Resources Laboratory, Tokyo Institute of Technology)
  • Published : 2005.02.01

Abstract

Bacterial cellulose (BC), which is produced by some bacteria, has unique structural, functional, physical and chemical properties. Thus, the mass production of BC for industrial application has recently attracted considerable attention. To enhance BC production, two aspects have been considered, namely, the engineering and genetic viewpoints. The former includes the reactor design, nutrient selection, process control and optimization; and the latter the cloning of the BC synthesis gene, and the genetic modification of the speculated genes for higher BC production. In this review, recent advances in BC production from the two viewpoints mentioned above are described, mainly using the bacterium Gluconacetobacter xylinus.

Keywords

References

  1. Deinema, M. H. and L. Zevehvizen (1971) Formation of cellulose fibrils by gram-negative bacteria and their role in bacterial flocculation. Arch. Microbiol. 78: 42-51 https://doi.org/10.1007/BF00409087
  2. Ross, P., R. Mayer and M. Benzimann (1991) Cellulose biosynthesis and function in bacteria. Microbiol. Rev. 55: 35-58
  3. Romling, U. (2002) Molecular biology of cellulose production in bacteria. Res. Microbiol. 153: 205-212 https://doi.org/10.1016/S0923-2508(02)01316-5
  4. Yoshinaga, F., N. Tonouchi, and K. Watanabe (1997) Research progress in production of bacterial cellulose by aeration and agitation culture and its application as a new industrial material. Biosci. Biotech. Biochem. 61: 219-224 https://doi.org/10.1271/bbb.61.219
  5. Fontana, J. D., A. M. Souza, C. K. Fontana, I. L. Torrianio, J. C. Moreschi, B. J. Galloyi, S. J. Souza, G. P. Narcisco, J. A. Bichara, and L. F. X. Farah (1990) Acetobacter cellulose pellicle as a temporary skin substitute. Appl. Biochem. Biotechnol. 24/25: 253-264 https://doi.org/10.1007/BF02920250
  6. Nishi, Y., M. Uryu, S. Yamanaka, K. Watanabe, N. Kitamura, M. Iguchi, and S. Mitsuhashi (1990) The structure and mechanical properties of sheets prepared from bacterial cellulose. J. Mater. Sci. 25: 2997-3001 https://doi.org/10.1007/BF00584917
  7. Vandamme, E. J., S. D. Beats, A. Vanbalen, K. Joris, and P. D. Wulf (1998) Improved production of bacterial cellulose and its application potential. Polymer Degrad. Stabil. 59: 93-99 https://doi.org/10.1016/S0141-3910(97)00185-7
  8. Delmer, D. P. (1987) Cellulose biosynthesis. Annu. Rev. Plant Physiol. 38: 259-290 https://doi.org/10.1146/annurev.pp.38.060187.001355
  9. Swissa, M., Y. Aloni, H. Weinhouse, and M. Benziman (1980) Intermediatry steps in Acetobacter xylinum cellulose synthesis: Studies with whole cells and cell-free preparations of the wild type and a celluloseless mutant. J. Bacteriol. 143: 1142-1150
  10. Wong, H. C., A. L. Fear, R. D. Calhoon, G. H. Eichinger, R. Mayer, D. Amikam, M. Benziman, D. H. Gelfand, J. H. Meade, A. W. Emerick, R. Bruner, A. Ben-Bassat, and R. Tal (1990) Genetic organization of the cellulose synthase operon in Acetobacter xylinum. Proc. Natl. Acad. Sci. USA 87: 8130-8134 https://doi.org/10.1073/pnas.87.20.8130
  11. Saxena, I. M., K. Kudlicka, K. Okuda, and R. M. Brown Jr (1994) Characterization of genes in the cellulose-synthesizing operon (acs operon) of Acetobacter xylinum: implications for cellulose crystallization. J. Bacteriol. 176: 5735-5752 https://doi.org/10.1128/jb.176.18.5735-5752.1994
  12. Volman, G., P. Ohana, and M. Benziman (1995) Biochemistry and molecular biology of cellulose biosynthesis. Carbohydrates 20: 20-27
  13. Tal, R., H. C. Wong, R. Calhoon, D. Gelfand, A. L. Fear, G. Volman, R. Mayer, P. Ross, D. Amikam, H. Weinhouse, A. Cohen, S. Sapir, P. Ohana, and M. Benziman (1998) Three cdg operons control cellular turnover of cyclic di- GMP in Acetobacter xylinum: Genetic organization and occurrence of conserved domains in isoenzymes. J. Bacteriol. 180: 4416-4425
  14. Ross, P., H. Weinhouse, Y. Aloni, D. Michaeli, P. Weinberger- Ohana, R. Mayer, S. Braun, E. de Vroom, G. van der Marel, J. H. van Boom, and M. Benziman (1987) Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325: 279-281 https://doi.org/10.1038/325279a0
  15. Standal, R., T. G. Inversen, D. H. Coucheron, E. Fjærvik, J. Blatny, and S. Valla (1994) A new gene required for cellulose production and a gene encoding cellulolytic activity in Acetobacter xylinum are colocalized with the bcs operon. J. Bacteriol. 176: 665-672 https://doi.org/10.1128/jb.176.3.665-672.1994
  16. Nakai, T., A. Moriya, N. Tonouchi, T. Tsuchida, F. Yoshinaga, S. Horinouchi, Y. Sone, H. Mori, F. Sakai, and T. Hayashi (1998) Expression and characterization of sucrose synthase from mungbean seedlings in Escherichia coli. Gene 213: 93-100 https://doi.org/10.1016/S0378-1119(98)00191-7
  17. Nakai, T., Y. Nishiyama, S. Kuga, Y. Sugano, and M. Shoda (2002) ORF2 gene involves in the construction of high-order structure of bacterial cellulose. Biochem. Biophys. Res. Commun. 295: 458-462 https://doi.org/10.1016/S0006-291X(02)00696-4
  18. Brown R. M., Jr. H. Willson, and C. L. Richardson (1976) Cellulose biosynthesis in Acetobacter xylinum: Visualization of the site of synthesis and direct measurement of the in vivo process. Proc. Natl. Acad. Sci. USA 73: 4565-4569 https://doi.org/10.1073/pnas.73.12.4565
  19. Zaar, K. (1979) Visualization of pores (export sites) correlated with cellulose production in the envelope of the gram-negative bacterium Acetobacter xylinum. J. Cell. Biol. 80: 773-777 https://doi.org/10.1083/jcb.80.3.773
  20. Kimura, S., H. P. Chen, I. M. Saxena, R. M. Brown Jr., and T. Itoh (2001) Localization of c-di-GMP-binding protein with the linear terminal complexes of Acetobacter xylinum. J. Bacteriol. 183: 5668-5674 https://doi.org/10.1128/JB.183.19.5668-5674.2001
  21. Park, J. K., J. Y. Jung, and Y. H. Park (2003) Cellulose production by Gluconacetobacter hansenii in a medium containing ethanol. Biotechnol. Letts. 25: 2055-2059 https://doi.org/10.1023/B:BILE.0000007065.63682.18
  22. Park, J. K., S. H. Hyun, and J. Y. Jung (2004) Conversion of G. hansenii PJK into non-cellulose-producing mutants according to the culture condition. Biotechnol. Bioprocess Eng. 9:383-388 https://doi.org/10.1007/BF02933062
  23. Toyosaki, H., T. Naritomi, A. Seto, M. Matsuoka, T. Tsuchida, and F. Yoshinaga (1995) Screening of bacterial cellulose- producing Acetobacter strains suitable for agitated culture. Biosci. Biotech. Biochem. 59: 1498-1452 https://doi.org/10.1271/bbb.59.1498
  24. Kouda, T., H. Yano, F. Yoshinaga, M. Kaminoyama, and M. Kamiwano (1996) Characterization of non-Newtonian behavior during mixing of bacterial cellulose in bioreactor. J. Ferment. Bioeng. 82: 382-386 https://doi.org/10.1016/0922-338X(96)89155-0
  25. Kouda, T., H. Yano, and F. Yoshinaga (1997) Effect of agitator configuration on bacterial cellulose productivity in aerated and agitated culture. J. Ferment. Bioeng. 83: 371- 376 https://doi.org/10.1016/S0922-338X(97)80144-4
  26. Hwang, J. W., Y. K. Yang, J. K. Hwang, Y. R. Ryun, and Y. S. Kim (1999) Effects of pH and dissolved oxygen on cellulose production by Acetobacter xylinum BRC5 in agitated culture. J. Biosci. Bioeng. 88: 183-188 https://doi.org/10.1016/S1389-1723(99)80199-6
  27. Naritomi, T., T. Kouda, H. Yano, and F. Yoshinaga (1998) Effect of lactate on bacterial cellulose production from continuous culture. J. Ferment. Bioeng. 85: 89-95 https://doi.org/10.1016/S0922-338X(97)80360-1
  28. Son, H. J., M. S. Heo, Y. G. Kim, and S. J. Lee (2001) Optimization of fermentation conditions for the production of bacterial cellulose by a newly isolated Acetobacter sp. A9 in shaking cultures. Biotechnol. Appl. Biochem. 33: 1-5 https://doi.org/10.1042/BA20000065
  29. Hestrin, S. and M. Schramm (1954) Synthesis of cellulose by Acetobacter xylinum. II. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem. J. 58: 345-352 https://doi.org/10.1042/bj0580345
  30. Bae, S. and M. Shoda (2004) Production of bacterial cellulose by Acetobacter xylinum BPR2001 using molasses medium in a jar fermentor. Appl. Microbiol. Biotechnol. in press https://doi.org/10.1007/s00253-004-1593-7
  31. Bae, S. and M. Shoda (2004) Bacterial cellulose production by fedbatch fermentation in molasses medium. Biotechnol. Prog. 20: 1366-1371 https://doi.org/10.1021/bp0498490
  32. Gawande, B. N. and A. Y. Patkar (1999) Application of factorial designs for optimization of cyclodextrin glycosyltransferase production from Klebsiella pneumoniae AS-22. Biotechnol. Bioeng. 64: 168-173 https://doi.org/10.1002/(SICI)1097-0290(19990720)64:2<168::AID-BIT5>3.0.CO;2-5
  33. Box, G. E. P. and J. S. Hunter (1957) Multi-factorial designs for exploring response surfaces. Ann Math Stat. 28: 195-241 https://doi.org/10.1214/aoms/1177707047
  34. Francis, F., A. Sabu, K. M. Nampoothiri, S. Ramachandran, S. Ghosh,G. Szakacs, and A. Pandey (2003) Use of response surface methodology for optimizing process parameters for the production of $\alpha$-amylase by Aspergillus oryzae. Biochem. Eng. J. 15: 107-115 https://doi.org/10.1016/S1369-703X(02)00192-4
  35. Embuscado, M. E., J. S. Marks, and J. N. BeMiller (1994) Bacterial cellulose. II. Optimization of cellulose production by Acetobacter xylinum through response surface methodology. Food Hydrocoll. 8: 419-430 https://doi.org/10.1016/S0268-005X(09)80085-4
  36. Galas, E, A. Krystynowicz, L. Tarabasz-Szymanska, T. Pankiewicz, and M. Rzyska (1999) Optimization of the production of bacterial cellulose using multivariable linear regression analysis. Acta Biotechnol. 19: 251-260 https://doi.org/10.1002/abio.370190312
  37. Box, G. E. P. and D. W. Behnken (1960) Some new three level designs for the study of quantitative variables. Technometrics 2: 455-475 https://doi.org/10.2307/1266454
  38. Bae, S. and M. Shoda (2004) Statistical optimization of culture conditions for bacterial cellulose production using Box-Behnken design. Biotechnol. Bioeng. in press https://doi.org/10.1002/bit.20325
  39. Noro, N., Y. Sugano, and M. Shoda (2004) Utilization of the buffering capacity of corn steep liquor in bacterial cellulose production by Acetobacter xylinum. Appl. Microbiol. Biotechnol. 64: 199-205 https://doi.org/10.1007/s00253-003-1457-6
  40. Chao, Y., M. Mitarai, Y. Sugano, and M. Shoda (2001) Effect of addition of water-soluble polysaccharides on bacterial cellulose production in a 50-L airlift reactor. Biotechnol. Prog. 17: 781-785 https://doi.org/10.1021/bp010046b
  41. Bae, S., Y. Sugano, and M. Shoda (2004) Improvement of bacterial cellulose production by addition of agar in a far fermentor. J. Biosci.Bioeng. 97: 33-38 https://doi.org/10.1016/S1389-1723(04)70162-0
  42. Ishida, T., M. Mitarai, Y. Sugano, and M. Shoda (2003) Role of water-soluble polysaccharides in bacterial cellulose production. Biotechnol. Bioeng. 83: 474-478 https://doi.org/10.1002/bit.10690
  43. Onken, U. and P. Weiland (1983) Airlift Fermentors: Construction, Behavior, and Use. In Advances in Biotechnological Processes 1. pp. 67-95. Alan R. Liss, Inc., NY, USA
  44. Siegel, M. H., M. Hallaie, and J. C. Merchunk (1988) Airlift Reactors: Design, Operation, and Applications. In Upstream Process: Equipment and Techniques. pp. 79-124. Alan R. Liss, Inc., NY, USA
  45. Chao, Y., Y. Sugano, T. Kouda, F. Yoshinaga, and M. Shoda (1997) Production of bacterial cellulose by Acetobacter xylinum with an air-lift reactor. Biotechnol. Tech. 11: 829-832 https://doi.org/10.1023/A:1018433526709
  46. Chao, Y., T. Ishida, Y. Sugano, and M. Shoda (2000) Bacterial cellulose production by Acetobacter xylinum in a 50- L internal-loop airlift reactor. Biotechnol. Bioeng. 68: 345- 352 https://doi.org/10.1002/(SICI)1097-0290(20000505)68:3<345::AID-BIT13>3.0.CO;2-M
  47. Chao, Y., Y. Sugano, and M. Shoda (2001) Bacterial cellulose production under oxygen-enriched air at different fructose concentrations in a 50-liter, internal-loop airlift reactor. Appl. Microbiol. Biotechnol. 55: 673-679 https://doi.org/10.1007/s002530000503
  48. Chao, Y. (2002) Characteristics of Bacterial Cellulose Production by Acetobacter xylinum by an Airlift Reactor. Ph.D. Thesis. Tokyo Institute of Technology, Tokyo, Japan
  49. Joseph, G., G. E. Rowe, A. Margaritis, and W. Wan (2003) Effects of polysaccharide-co-acrylic acid on cellulose production by Acetobacter xylinum. J. Chem. Technol. Biotechnol. 78: 964-970 https://doi.org/10.1002/jctb.869
  50. Serafica, G., R. Mormino, and H. Bungay (2002) Inclusion of solid particles in bacterial cellulose. Appl. Microbiol Biotechnol. 58: 756-760 https://doi.org/10.1007/s00253-002-0978-8
  51. Krystynowicz, A., W. Czaja, A. Wiktorowska-Jezierska, M. Goncalves-Miskiewicz, M. Turkiewicz, and S. Bielecki (2002) Factors affecting the yield and properties of bacterial cellulose. J. Indust. Microbiol. Biotechnol. 29: 189-195 https://doi.org/10.1038/sj.jim.7000303
  52. Solano, C., B. Garcia, J. Valle, C. Berasain, J-M. Ghigo, C. Gamazao, and I. Lasa (2002) Genetic analysis of Salmonella enteritidis biofilm formation: Critical role of cellulose. Mol. Microbiol. 43: 793-808 https://doi.org/10.1046/j.1365-2958.2002.02802.x
  53. Wulf, P. D., K. Joris, and E. J. Vandamme (1996) Improved cellulose formation by an Acetobacter xylinum mutant limited in (keto)gluconate synthesis. J. Chem. Tech. Biotechnol. 67: 376-380 https://doi.org/10.1002/(SICI)1097-4660(199612)67:4<376::AID-JCTB569>3.0.CO;2-J
  54. Ishida, T, Y. Sugano, T. Nakai, and M. Shoda (2002) Effects of acetan on production of bacterial cellulose by Acetobacter xylinum. Biosci. Biotechnol. Biochem. 66: 1677- 1681 https://doi.org/10.1271/bbb.66.1677
  55. Bae, S., Y. Sugano, K. Ohi, and M. Shoda (2004) Features of bacterial cellulose synthesis in a mutant generated by disruption of the diguanylate cyclase 1 gene of Acetobacter xylinum BPR2001. Appl. Microbiol. Biotechnol. 65: 315-322 https://doi.org/10.1007/s00253-004-1593-7
  56. Zogaj, X., M. Nimitz, M. Rohde, W. Bokranz, and U. Romling (2001) The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol. Microbiol. 39: 1452-1463 https://doi.org/10.1046/j.1365-2958.2001.02337.x