Effective viscosity of bidisperse suspensions

  • Published : 2005.03.01

Abstract

We determine the effective viscosity of suspensions with bidisperse particle size distribution by modifying an effective-medium theory that was proposed by Acrivos and Chang (1987) for monodisperse suspensions. The modified theory uses a simple model that captures some important effects of multi-particle hydrodynamic interactions. The modifications are described in detail in the present study. Estimations of effective viscosity by the modified theory are compared with the results of prior work for monodisperse and bidisperse suspensions. It is shown that the estimations agree very well with experimental or other calculated results up to approximately 0.45 of normalized particle volume fraction which is the ratio of volume faction to the maximum volume fraction of particles for bidisperse suspensions.

Keywords

References

  1. Acrivos, A. and E. Y. Chang, 1986, A model for estimating transport quantities in two-phase materials, Phys. Fluids 29, 3-4 https://doi.org/10.1063/1.866018
  2. Batcheloer, G. K., 1970, The stress system in a suspension of force-free particles, J. Fluid Mech. 41, 545-570 https://doi.org/10.1017/S0022112070000745
  3. Brady, J. F. and G. Bossis, 1985, The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation, J. Fluid Mech. 155, 105-129 https://doi.org/10.1017/S0022112085001732
  4. Beenakker, C. W. J., 1984, The effective viscosity of a concentrated suspension of spheres (and its relation to diffusion), Physica A 128, 48-81 https://doi.org/10.1016/0378-4371(84)90081-5
  5. Bouillot, J. L., C. Camoin, M. Belzons, R. Blanc and E. Guyon, 1982, Experiments on 2-D suspensions, Adv. Coll. Interface Sci. 17, 299 https://doi.org/10.1016/0001-8686(82)80026-2
  6. Chang, E. Y. and A. Acrivos, 1986, Rate of heat conduction from a heated sphere to a matrix containing passive spheres of a different conductivity, J. Appl. Phys. 59, 3375-3382 https://doi.org/10.1063/1.336803
  7. Chang, E. Y. and A. Acrivos, 1987, The rate of heat conduction from a heated sphere to a packed bed of passive spheres, Chem. Eng. Comm. 58, 165-170 https://doi.org/10.1080/00986448708911965
  8. Chang, C. and R. L. Powelll, 1993, Dynamic simulation of bimodal suspensions of hydrodynamically interacting spherical particles, J. Fluid Mech. 253, 1-25 https://doi.org/10.1017/S0022112093001697
  9. Chong, J. S., E. B. Christiansen and A. D. Baer, 1971, Rheology of concentrated suspensions, J. Appl. Polymer. Sci. 15, 2007- 2021 https://doi.org/10.1002/app.1971.070150818
  10. Chun, M. -S., S. Lee, T. S. Lee and J. S. Cho, 2004, Microstructure and shear modulus in concentrated dispersions of bidisperse charged spherical colloids, Korea-Australia Rheology J. 16(1), 17-26
  11. Gadala-Maria, F. A., 1979, The rheology of concentrated suspensions, Ph. D. Thesis, Stanford University
  12. Koo, S. and A. S. Sangani, 2002, Effective-medium theories for predicting hydrodynamic transport properties of bidisperse suspensions, Phys. Fluids 14, 3522-3533 https://doi.org/10.1063/1.1503352
  13. Ladd, A. C., 1990, Hydrodynamic transport coefficients of random dispersions of hard spheres, J. Chem. Phys. 93, 3484- 3494 https://doi.org/10.1063/1.458830
  14. Leal, L. G., 1992, Laminar flow and convective transport processes: Scaling principles and asymptotic analysis, Butterworth- Heinemann, Boston
  15. Lebowitz, J. L., 1964, Exact solution of generalized Percus- Yevick equation for a mixture of hard spheres, Phys. Rev. 133, A895-A899 https://doi.org/10.1103/PhysRev.133.A895
  16. Leonard, P. J., D. Henderson and J. A. Barker, 1971, Calculation of the radial distribution function of hard sphere mixtures in the Percus-Yevick approximation, Mol. Phys. 21, 107-111 https://doi.org/10.1080/00268977100101221
  17. Mo, G. and A. S. Sangani, 1994, A method for computing Stokes flow interactions among spherical objects and its application to suspensions of drops and porous particles, Phys. Fluids 6, 1637-1652 https://doi.org/10.1063/1.868227
  18. Poslinski, A. J., M. E. Ryan, R. K. Gupta, S. G. Seshadri and F.J. Frechette, 1988, Rheological behavior of filled polymeric systems II. The effect of a bimodal size distribution of particulates, J. Rheol. 32, 751-771 https://doi.org/10.1122/1.549991
  19. Patzold, R., 1980, Die Abhangigkeit des FlieBverhaltens konzentrierter Kugelsuspensionen von der Stromungsform: Ein Vergleich der Viskositat in Scher- und Dehnstromungen, Rheol. Acta 19, 322-344 https://doi.org/10.1007/BF01543146
  20. Sangani, A. S. and G. Mo, 1994, Inclusion of lubrication forces in dynamic simulations, Phys. Fluids 6, 1653-1662 https://doi.org/10.1063/1.868228
  21. Shappiro, A. P. and R. F. Probstein, 1992, Random packings of spheres and fluidity limits of monodisperse and bidisperse suspensions, Phys. Rev. Lett. 68, 1422-1425 https://doi.org/10.1103/PhysRevLett.68.1422
  22. Throop, C. J. and R. J. Bearman, 1965, Radial distribution function for mixtures of hard spheres, J. Chem. Phys. 42, 2838- 2843 https://doi.org/10.1063/1.1703249