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Abstract

In probabilistic design, the challenge is to estimate the uncertainty propagation, since
outputs of subsystems at lower levels could constitute inputs of other systems or at higher
levels of the multilevel systems. Three uncertainty propagation estimation techniques are
compared in this paper in terms of numerical efficiency and accuracy: root sum square
(linearization), distribution-based moment approximation, and Taguchi-based integration.
When applied to reliability-based design optimization (RBDO) under uncertainty, it is
investigated which type of applications each method is best suitable for. Two nonlinear
analytical examples and one vehicle crashworthiness for side-impact simulation example
are employed to investigate the unique features of the presented techniques for uncertainty
propagation. This study aims at helping potential users to identify appropriate techniques
for their applications in the multilevel design.

Keywords: reliability based optimization, uncertainty propagation, experimental
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1 Introduction

Probabilistic design does not only entail the difficulty of formulating and solving non-
deterministic optimization problems; it is also quite challenging to model the mechanism
of uncertainty propagation throughout the multilevel hierarchy. Outputs of subsystems at
lower levels could constitute inputs of other systems or at higher levels of the multilevel
systems which refers to the optimization process of large, complex engineering systems
that are decomposed into a hierarchy of subsystems. It is thus necessary to estimate the
statistical information of these outputs (which could be also inputs of subsystems at higher
levels) with adequate accuracy without requiring a huge amount of raw data. Analytical
target cascading (ATC) formulation enables the use of first-order Taylor series
(Greenwood and Chase 1990) for approximating nonlinear responses. In response to these
new requirements, the ATC formulation has been extended to solve probabilistic design
optimization problems. The coupled interactions between subsystems need to be taken into
consideration to achieve consistent designs. ATC is a methodology that takes these
interactions into account during the early stages of the design optimization process and the
ATC consistency constraints do not allow large deviations from the incumbent expansion
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point (which are the mean values of the design variables) during the optimization process.
In this manner, not only nonlinear responses can be linearized, but also they can be
considered as normally distributed if all the random variables they depend on were also
normally distributed. Although large approximation errors of expected values for the
nonlinear responses are avoided, the convergence rate of the ATC process can be low since
many iterations involving small “steps” may be necessary. In addition, this estimation
technique may exhibit relatively large errors when approximating higher-order statistical
moments (Youn and Choi 2004).

This paper considers two alternative methods for estimating statistical moments of
nonlinear responses of random variables in order to prepare the multilevel design. The first
method generates approximate probability density functions to be numerically integrated.
The second method uses numerical quadrature rules motivated by Taguchi-type
experimental designs (Youn and Choi 2004). The scope of this paper is to investigate the
stability, accuracy, and efficiency of these two methods when applied on simulation-based,
reliability optimization problems, and to determine which type of applications each method
is best suitable for. And this could be the basis for the reliability optimization of multilevel
system design.

2 Probabilistic design process: reliability-based design optimization

As a parametric design process, the RBDO model can be generally defined (Youn and
Choi 2004) as

min Cost(d)
s.t. P(G(X)<0)-D(-B,)<0, i=1,---,NP (1)
d- <d<d?, de R*™ and X e R™

where d=4(X) is the design vector, X is the random vector, and the probabilistic
constraints are described by the performance function G,(x) with G,(x)<0 as a failure,
their probabilistic models, and their prescribed confidence level g .

Through inverse transformation, the probabilistic constraint in equation (1) can be
further expressed in two distinct forms as:

B, =0 (F,0)z 45 @)
G, =F,'(®(-5))20 3)

where g and G, are respectively referred to as the safety reliability index and the
probabilistic performance measure for the ith probabilistic constraint. Usmg the reliability
index, equation (3) is then employed to describe the probabilistic constraint in equation (1),
i.e., the so-called reliability index approach (RIA). Similarly, equation (4) can replace the
probabilistic constraint in equation (1) with the performance measure, referred to as the
performance measure approach (PMA).

There are three major advantages in using PMA as compared to RIA (Youn and Choi
2004). First, it is found that PMA is inherently robust and more effective when the
probabilistic constraint is either very much feasible or very much infeasible. Second, and
more significantly, PMA always yields a solution, whereas RIA may not yield solutions for
certain types of distributions, such as Gumbel or uniform distributions. Third, it is also
found that PMA is more effective than RIA when the response surface method (RSM) is
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used for RBDO. Therefore, PMA is only presented in this study, rather than employing
ineffective RIA.

First-order reliabilitv analysis in PMA

The first-order reliability analysis in PMA can be formulated as the inverse of the first-
order reliability analysis in RIA. The first-order probabilistic performance measure G, is
obtained from an optimization problem with an n-dimensional explicit sphere constraint in
U-space, defined as

To find u*ﬂ, , minize G(U)

. ; “

subjectto  |U]| =3,
The optimum point on a target reliability surface is identified as the most probable point
(MPP) u, .

3 Uncertainty propagation techniques

The solution of a probabilistic design problem requires information on the distribution and
moments of the random design variables and parameters. Typically, this information is
given or postulated at the bottom level of a probabilistic multilevel system design problem.
However, since the outputs of lower-level problems constitute inputs to higher-level
problems, we must propagate the uncertainty information as accurate as possible to solve
the higher-level problems and the overall multilevel design problem. In this section we
present two alternative techniques for estimating uncertainty propagation.

3.1 Advanced mean value based distribution generation and moment estimation

The main idea of this technique is to perform a reliability analysis on the output response
(i.e., the nonlinear response of the random variables) using first order reliability method
(FORM) for a sufficiently large range of reliability targets, e.g., from g =4 (with corresponding

probability of failure P = q)(~ ﬂ): 0.00003) to B =—4 (withpf = ®(- £)=0.99997). Once the

most probable point is found by the hybrid mean value (HMV) method (Youn and Choi
2004), the output response is evaluated at this point to provide the “corrected” function
value for the corresponding probability of failure (Wu et al 1990). With the cumulative
density function (CDF) available, one can then differentiate numerically to obtain the
probability density function (PDF) (Du and Chen 2001). Central differences are used to
obtain second-order accurate approximations. Finally, numerical integration is performed
using spline interpolation to estimate response values that lie between the available
“discrete” points of the PDF, to compute moments. As will be shown later by means of
preliminary numerical results, this method is quite accurate. However, it can be inefficient
depending on how the “ g-range” is “discretized”.

3.2 Taguchi-based integration and moment estimation

3.2.1 Output statistical moment modeling: numerical integration on input domain

One purpose of statistical moment estimation stems from the robust design optimization,
which attempts to minimize the quality loss (Chandra 2001, Taguchi et al 1989), which is a
function of the statistical mean and standard deviation. Several methods are proposed to
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estimate the first two statistical moments of the output response. Analytically, the
statistical moments are expressed in an integration form as

E[R]z [ R £, ()i 5
B[RO - )} = [ [ (RO - )" £, (%)

Using numerical integration, the statistical moments of output response are
approximated through numerical integration on the input domain as

E[R]|z g,

= [ [ ROy, (), -+,

=Z Zw Ry +a,, -, +a,) (6)

Ja=l

f f(R(x) He)' HfX(x)dx -dx,

Ill

E[R(X) - 1|

iw}.‘ iw]n[R(/ul +aj1"“’lun +aj,,)—/—jR]

A=l Ja=1

For application, Taguchi (1978, 1989) proposed an experimental design approach for
statistical tolerance design with a three-level (m=3) factorial experiment, which are
composed of low, center, and high levels as {w,,w,,w,,a,,a,,a,}= {1/3,1/3,1/3 ’_\/3/_270’«/3/72}'

Three-level factorial experiment is modified by D’Errico and Zaino(1988) by employing
distinctive weights at different levels as {w,,w,,w,,q,,a,,a,}= {1/6,4/6,1/6,_J§,0,J§ }

Thus, the modified three-level factorial experiment improved numerical accuracy in
estimating the statistical moments of output response. In numerical integration, three
weights for x, are used to approximate the probability density of x, at three different
probability levels. From the statistical point of view, the modified three-level factorial
experiment is meaningful, since many random input variables follows the rule of high
density near the mean and low density at the tail of statistical distribution, as shown in
figure 1.

A
fX (",) 4 fX, ('xl)
4/6 ............................................ ,
1/3 .
IR T
Hy, ‘\/%GX,- Hx py, +\/%GX. :\/1 Hy, _‘EO—X,» Hiu, My, +‘/§O'X,- )Z
(‘a) Taguchi Method (1978) (b) D’Errico and Zaino Method (1988)

Figure 1: Three-level numerical integration on the input domain
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In the experimental method, the computation of the moment could be very expensive
for a large number of design and/or random parameters, since the number of function
evaluations or experiments required is N =3" where n is a number of design and random
parameters. Thus, this method is not used in this paper.

3.2.2 Output statistical moment modeling: numerical integration on output domain
In Section 3.2.1, statistical moments of output response are estimated through numerical
integration on the input domain, making it very expensive for reliability-based robust
design optimization. In this paper, the proposed method directly identifies uncertainty
propagation using numerical integration on the output domain. Unlike equation (5), the
statistical moment calculation is carried out by

E[R]l = J:rfR(r)dr:/JR
E[(R_/uR)]k = Eo(r_ﬂR)kfR(r)dr

where £, (r) is a probability density function of R. To approximate the statistical moments
of R accurately, N-point numerical quadrature technique can be used as

(N

N
E[R]1 =, = Zwl.ri and
y i=1 (8)
E[(R-p )l =2 wi(r; - )" for 2<k<5

i=1

At minimum, the three-point integration (N=3) is required to maintain a good accuracy
in estimating first two statistical moments. By solving equation (8), three levels and weights
on the output domain are obtained as{r. r, r.}= i’ﬂ=_ e, ﬁ} and {w,,w, a_W3}= {i/6,4/6,1/6}
as shown in figure 2. In general, upper and lower levels are not symmetrically located, as
shown in figure 2.
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Figure 2: Three-level numerical integration on the output domain
Using the three-level numerical integration on the output domain, the first two

statistical moments in equation (7), the mean and standard variation of the output response
are approximated to be
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Since the statistical moments of output response are estimated through a numerical
integration on the output (or performance) domain, this method is called performance
moment integration (PMI) method. In the PMI method, r, pandr,_ . are obtained
through reliability analyses (Wu 1990, Du 2001) at g=+43 confidence levels. In this
paper, HMV method is used for reliability analysis.

4 Numerical examples

Two nonlinear analytical examples and one vehicle crashworthiness for side-impact
simulation example are used to demonstrate the aforementioned techniques. For
abbreviation purposes, the method presented in Section 3.1 is called distribution-based
method (DBM) in this paper. Monte Carlo simulation (MCS) with one million samples and
root sum square (RSS) method are used for numerical comparison. Experimental methods
(Taguchi 1989) are not used for comparison because it would be too expensive even
though it would be as accurate as MCS. Statistical non-normality of the response functions
is represented by skewness and kurtosis. Skewness is a measure of symmetry of
probability density function (a normal distribution has a skewness value of 0). Kurtosis is a
measure of relative peakness/flatness of probability density function to normal distribution,
which has a kurtosis value of 3.
The first analytical example, the response is

R(X)=1-X]X,/20 (10)

For this example, the input random parameters are modeled as X; ~N(5.0,0.3) for i=1,2. As
shown in table 1 and figure 3, the probabilistic distribution of the first response is close to
a normal distribution with a moderate rate of skewness and kurtosis. Thus, RSS, DBM, and
performance moment integration (PMI) show overall a good accuracy in estimating the
first two statistical moments of responses.

The second analytical example response is

R,(X)=-e""7-X,+10 (an

The input random parameters are modeled as X; ~N(6.0,0.8) for i=1,2. As shown in table 1,
the RSS method yields a large approximation error of 107% for the second moment,
whereas the DBM and PMI methods are much more accurate for both the mean and
standard deviation.

The last single-level example R; is the pubic force from a side impact simulation (Youn
Choi, Yang and Gu), which is modeled with input uncertaintics of Gumbel distribution and
10% coefficient of variation. Even though the stochastic response is highly skewed with
large kurtosis, the PMI method seems to predict the first two statistical moments accurately
whereas the RSS could yield larger errors. DBM results are not available for this example.
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Table 1: Single-level examples

Mean Standard Deviation Skew. | Kurt.
RSS | DBM PMI MCS RSS | DBM | PMI MCS
R1 -5.2500 | -5.286 | -5.286 | -5.2719 { 0.8385 | 0.842 | 0.8411 | 0.8405 | -0.26 | 3.11
Error, % | 0.415 | -0.259 | -0.259 -- -0.238 { 0.17 | 0.071 -- --
R2 3.6321 |3.6029 | 3.6082 | 3.4937 | 1.9386 |0.9013| 0.8800 | 0.9349 | -0.57 | 7.13
Error, % | 3.961 | 3.125 | 3.277 -- 107.4 |-3.593| -5.872 -
R3 -14100 | N/A |-1.4135]-1.4291 | 0.0632 | N/A | 0.0685 | 0.0708 | -0.99 | 4.93
Error, % | 1.337 | N/A 1.092 -- -10.73 | N/A | -3.248 - -- --
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Figure 3: PDF of R, (left), R, (right), and R; (bottom)
5 Discussion and conclusions

Two alternative techniques for estimating uncertainty propagation in probabilistic design
of multilevel systems were presented in the paper. The first method generates approximate
probability density functions, which are then integrated numerically to obtain statistical
moments (DBM). The second method uses numerical quadrature rules to estimate
statistical moments of output response (PMI). The methods were successfully applied to
model the uncertainty propagation mechanism by estimating statistical moments efficiently
and accurately. The scope of this paper was to investigate the stability, accuracy, and
efficiency of these two methods when applied on simulation-based, multilevel system
design optimization problems, and to determine which type of applications each method is
best suited for. It was found that both DBM and PMI estimate statistical moments
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accurately for nonlinear responses with high skewness and kurtosis. Thus, PMI and DBM
successfully carried out the probabilistic design optimization of multilevel hierarchical
system. The methods were compared to the RSS method and Monte Carlo simulation was
performed to compare the estimation of statistical moments. PMI and DBM are more
accurate to assess statistical moments than RSS. PMI can be useful for many nonlinear
engineering systems, since it is computationally inexpensive yet accurate. On the other
hand, DBM can be more accurate but is computationally more expensive. Finally, DBM
should be used when the probabilistic design of multilevel systems requires generating
distributions of nonlinear responses, i.e., when moments are not adequate to model
propagation of uncertainties.
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