Prediction of Flicker for PDP Devices

플라즈마 디스플레이 패널의 플리커 발생에 대한 예측

  • Jin Guang-Xu (Dept. of Electronic & Electrical Engineering., Pohang University of Science and Technology) ;
  • Kang Sung-Ho (Dept. of Electronic & Electrical Engineering., Pohang University of Science and Technology) ;
  • Hong Ki-Sang (Dept. of Electronic & Electrical Engineering., Pohang University of Science and Technology)
  • Published : 2005.03.01

Abstract

Flicker is the 'variation in brightness or he perceived won stimulation by intermittent or temporally non uniform light'. This phenomenon is blown as the cause of eye strain and headaches. Many researchers are dedicated to reducing this phenomenon. The flicker phenomenon also exists in PDP as some other display types, and is a critical problem in 50 Hz PDP. However, it is difficult to define flicker by more than one subjective judgment. So, an objective measurement of flicker is necessary and convenient for research on displays. In this paper, a computational prediction model is proposed which is used to predict luminance flicker (not chromatic flicker) by giving a quantitative output that describes the probability of occurrence of flicker. Through this work, we expected to provide a practical tool for flicker-free design in PDP.

Flicker 란 인체가 느끼는 빛과 색상의 변화이다. 이런 변화는 일반적으로 일정하지 않으며 시간이 변함에 따라 변한다. 이는 눈의 피로와 두통을 일으키는 원인이 된다. Flicker 현상은 PDP를 포함하는 많은 display에 존재하며 특히 50Hz로 동작 하는 PDP의 경우에 심각한 문제를 발생시킨다. Flicker를 감소하기 위해서 많은 연구가 진행되었지만 Flicker에 대한 객관적인 정의를 내리기 어렵기 때문에 flicker에 대한 객관적인 측정방법이 필요하며 이는 display 화질 향상에 큰 도움이 될 것이다. 본 논문에서는 luminance flicker를 측정하는 수학적인 모델을 제안한다. 이 모델을 통하여 flicker가 생길 확률에 대한 정량적인 결과를 보여준다. vision 분야의 최근의 연구와 고전적인 연구결과를 적용하여 모델을 구축하였으며 인체의 눈의 임시 민감도에 초점을 맞추었다. 본 연구를 통하여 flicker-free한 PDP 개발을 위한 실제적인 툴을 만들 수 있을 것이다.

Keywords

References

  1. Burr, David C., & Morrone, M. Concetta (1993), Impulse-response Functions for Chromatic and Achromatic Stimuli, J. Opt. Soc. Am. A, Vol. 10 No.8, pp. 1706-1713, August 1993 https://doi.org/10.1364/JOSAA.10.001706
  2. de Lange, H. (1958), Research into the dynamic nature of the human fove-cortex systems with intermittent and modulated light. I. Attenuation Characteristics with White and Colored Light, Journal of the Optical Society of America. 1958,48,777-784 https://doi.org/10.1364/JOSA.48.000777
  3. Graham, Norma, & Hood, Donald C. (1992), Modeling the Dynamics of Light Adaptation: the Merging of Two Traditions, Vision Research, Vol. 32 No.7, pp. 1373-1393, 1992 https://doi.org/10.1016/0042-6989(92)90230-G
  4. Heeger, David (1997), 'Signal detection theory (intro)' and 'Signal detection (advanced)', Handout on Homepage
  5. Hood, D. C. (1998), Lower-Level Visual Processing and Models of Light Adptation, Annu. Rew. Psychol., 49:503-35, 1998 https://doi.org/10.1146/annurev.psych.49.1.503
  6. Kelly, D.H. (1961), Visual Responses to time-dependent stimuli. I. Amplitude Sensitivity Measurements. Journal of the Optical Society of America. 1961,51,422-429. (a) https://doi.org/10.1364/JOSA.51.000422
  7. Kulikowski, J. J., & V. Walsh and I.J. Murray (1991), Limits of Vision, Volume 5 of Vision and Visual Dysfunction, Macmillan Press
  8. Nachmias, Jacob (1980), On The Psychometric Function for Contrast Detection, Vision Research Vol.21 pp.215-223 https://doi.org/10.1016/0042-6989(81)90115-2
  9. Rashbass, C. (1970), The Visibility of Transient Changes of Luminacne. J. Physiol. Lond. 21., 165-186
  10. Rashbass, C (1976) Unification of two contrasting models of the visual increment threshold. Vision Research. 1976,16, 1281-1283 https://doi.org/10.1016/0042-6989(76)90054-7
  11. Roufs, J. A. J. (1972), Dynamic Properties of Vision-I. Experimental Relationships between Flicker and Flash Thresholds. Vision Research, 1972,12,261-278.(a) https://doi.org/10.1016/0042-6989(72)90117-4
  12. Roufs, J. A. J. (1972), Dynamic Properties of Vision-Il, Theoretical Relationships between Flicker and Flash Thresholds. Vision Research, 1972,12,279-292. (b) https://doi.org/10.1016/0042-6989(72)90118-6
  13. Roufs, J. A. J. (1973), Dynamic Properties of Vision-III. Twin Flashes, Single Flashes and Flicker Fusion. Vision Research, 1973,13,309-323 https://doi.org/10.1016/0042-6989(73)90109-0
  14. Roufs, J. A. J. (1974), Dynamic Properties of Vision-IV. Thresholds of decremental flashes, incremental flashes and Doublets in Relation to Flicker Fusion. Vision Research, 1974,14,831-851(a) https://doi.org/10.1016/0042-6989(74)90148-5
  15. Roufs, J. A. J. (1974), Dynamic Properties of Vision-V. Perception Lag and Reaction Time in Relation to Flicker and Flash Thresholds. Vision Research, 1974,14,853-869.(b) https://doi.org/10.1016/0042-6989(74)90149-7
  16. Roufs, J. A. J. (1974), Dynamic Properties of Vision-VI. Stochastic Threshold Fluctuations and Their Effect on Flash-to-Flicker Sensitivity Ratio. Vision Research, 1974,14,831-851.(c) https://doi.org/10.1016/0042-6989(74)90148-5
  17. Rovamo, J.,& Raninen, A., & Donner, K. (1999), The effects of temoral noise and retinal illuminance on foveal flicker sensitivity, Vision Research,39, 533-550, 1999 https://doi.org/10.1016/S0042-6989(98)00120-5
  18. Salters, B., & van Dijk, R. (2001), Reduction of Large Area Flicker in Plasma Display Panels, 1098.SID 01 Digest
  19. Watson, A. B. (1986), Temporal Sensitivity. Chapter 6 in Handbook of Perception and Human Performance, New York: Wiley
  20. Watson, A. B. (1979), Probability Summation over Time. Vision Research, 1979, 19, 515-522 https://doi.org/10.1016/0042-6989(79)90136-6
  21. Watson, A.B., & Nachmias, J. (1977), Patterns of temporal interaction in the detection of gratings. Vision Research, 1977, 17, 893-902 https://doi.org/10.1016/0042-6989(77)90063-3