Palmprint Identification Algorithm using Hu Invariant Moments

Hu 불변 모멘트를 이용한 장문인식 알고리즘

  • 신광규 (조선대학교 대학원) ;
  • 이강현 (조선대학교 전자정보공과대학 전자공학과)
  • Published : 2005.03.01

Abstract

Recently, Biometrics-based personal identification is regarded as an effective method of person's identity with recognition automation and high performance. In this paper, the palmprint recognition method based on Hu invariant moment is proposed. And the low-resolution(750dpi) palmprint image$(5.5Cm\times5.5Cm)$ is used for the small scale database of the effectual palmprint recognition system. The proposed system is consists of two parts: firstly, the palmprint fixed equipment for the acquisition of the correctly palmprint image and secondly, the algorithm of the efficient processing for the palmprint recognition. And the palmprint identification step is limited 3 times. As a results, when the coefficient is 0.001 then FAR and GAR are $0.038\%$ and $98.1\%$ each other. The authors confirmed that FAR is improved $0.002\%$ and GAR is $0.1\%$ each other compared with [3].

최근 생체인식기반의 개인인증은 인증의 자동화와 높은 성능으로 개인인증의 효과적인 방법으로 대두되고 있다. 본 논문에서는 Hu 불변 모멘트에 기초한 장문인식 방법을 제안하였다. 그리고 장문인식 알고리즘의 전체 실행 속도를 높여 효율성 있는 장문인식 시스템을 설계하기 위하여 저해상도(75dpi) 장문이미지$(5.5cm\times5.5cm)$를 사용한다. 제안된 시스템은 두 부분으로 이루어져 있는데 정확한 장문이미지를 획득하기 위한 장문 고정장치와 장문인증을 효과적으로 처리할 수 있는 알고리즘으로 구성되어 있다. 그리고 장문인증 단계는 3회로 제한되며, 그 결과 임계값 0.001일 때 FAR은 $(5.5cm\times5.5cm)$, GAR은 $98.1\%$이다. 이는 [3]과 비교하여, FAR은 $0.002\%$, GAR은 $0.1\%$ 향상되었음을 확인하였다.

Keywords

References

  1. K. Yamato, Y. Hara, 'Fingerprint Identification System by Ravine Thinning,' IEICE, Vol. J71-D, No.2, pp. 329-335, 1988
  2. W. Shu and D Zhang, 'Automated Personal Identification by Palmprint,' Optical Eng., vol. 37m no. 8, pp. 2659-2362, 1998 https://doi.org/10.1117/1.601756
  3. David Zhang, Wai-Kin Kong, Jane You, Michael Wong, 'Online Palmprint Identification,' IEEE Trans. Pattern analysis and Machine Intelligence, vol. 25, no. 9, pp. 1041 - 1050, 2003 https://doi.org/10.1109/TPAMI.2003.1227981
  4. Sun B. Jun, Young D. Lim, 'Personal Verification using Feature Patterns of Palmprint,' KICS, vol. 17, no. 12, pp. 1437-1450, 1992
  5. N. Otsu, 'A threshold selection method from gray level historgam,' IEEE SMC-9, no. 1, pp. 62-66, 1979
  6. K. fukunage, Introduction to Statistical Pattern Recognition, New York Academic, 1972
  7. Rafael C. Gonzales and Richard E. Woods, Digital Image Processing, Addison Wesley, pp. 514-518, 1993
  8. Robert M. Haralic and Linda G. Shapiro, Computer and Robort Vision II, Addison Wesley, pp. 428-330, 1993
  9. Morton Nadler and Eric P. Smith, Pattern Recognition Engineering, Wiley-Interscience, pp.197 - 199, 1993
  10. Papoulis, Probability, Random Variables, and Stochastic Processes, McGraw Hill, 1965
  11. Cho-Huak Teh and Roland T. Chin, 'On Digital Approximation of Moment invariants,' Computer Vision, Graphics, And Image Processing, Vol. 33, pp. 318-326, 1986 https://doi.org/10.1016/0734-189X(86)90180-5
  12. M. K. Hu, 'Pattern recognition by moment invariants,' Proc. IEEE, vol. 49, no. 9, pp. 1428, Sept. 1961