Symbiotic Effectiveness of Bradyrhizobium japonicum USDA 110 in Supernodulating Soybean Mutant SS2-2

  • Lestari Puji (Department of Plant Science, Seoul National University, Research Institute for Food Crops Biotechnology) ;
  • Van Kyujung (Department of Plant Science, Seoul National University) ;
  • Kim Moon Young (Department of Plant Science, Seoul National University) ;
  • Lee Suk-Ha (Department of Plant Science, Seoul National University)
  • Published : 2005.06.01

Abstract

In the absence of exogeneous nitrogen supply, evaluation of a symbiosis effectiveness of Bradyrhizobium japonicum USDA 110 in a supernodulating soybean mutant, SS2-2, its wild type, Sinpaldalkong 2, and control genotype, Jangyeobkong, was conducted in this study. Nodules in SS2-2 were initially white and similar to its wild type, Sinpaldalkong 2. At the late stage, the wild type nodules became dark pinkish by maturation, by contrast, mature nodules in SS2-2 remained light green to pinkish, indicating a lack of leghemoglobin. Tap root length was short in nodulated symbiotic SS2-2 than that of its wild type and the control genotype. Nodulated root length and nodule density on root length were significantly increased by B. japonicum inoculation, but no significant increase was observed on root length and percentage of nodulation to total root length. Regardless of Bradyrhizobium inoculation, SS2-2 showed higher nodule dry weight and higher acetylene reduction activity (ARA) when compared with its wild type and the control genotype. Inoculation of B. japonicum leaded the increase of ARA in 47 days after planting (DAP), in part because of nodule development. Supernodulating mutant, SS2-2, less responded to B. japonicum induction in terms of nitrogen fixation and nodulation characteristics than its wild type. Thus, interaction of supernodulating soybean mutant with Bradyrhizobium had less symbiotically associated response than normal nodulating soybean.

Keywords

References

  1. Appleby, O. 1984. Leghemoglobin and Rhizobium respiration. Annu. Rev. PIant Physiol. 35 : 443-478 https://doi.org/10.1146/annurev.pp.35.060184.002303
  2. Bauer, W. D. 1981. Infection of legumes by rhizobia. Annu. Rev. Plant Physiol. 32 : 407-449 https://doi.org/10.1146/annurev.pp.32.060181.002203
  3. Carroll, B. J., D. J. McNeil, and P. M. Gresshoff. 1985. A supernodulation and nitrate-tolerant symbiotic (rits) soybean mutant. Plant Physiol. 78 . 34-40 https://doi.org/10.1104/pp.78.1.34
  4. Day, D. A, B. J Carroll, A C Delves, and P in Gresshoff. 1989. Relationship between autoregulation and nitrate inhibition of nodulation in soybeans. PhysioI. Plant. 75 . 37-42 https://doi.org/10.1111/j.1399-3054.1989.tb02060.x
  5. Day, D. A., G. D. Price, K. A. Schuller, and P. M. Gresshoff 1987. Nodule physiology of a supernodulating soybean (Glycine max) mutant Aust J. Plant Physiol. 14 : 527-538 https://doi.org/10.1071/PP9870527
  6. Delves, A. C., A. Mathews, D. A. Day, A. S. Carter, B. J. Carroll, and P. M. Gresshoff. 1986. Regulation of the soybean-Rhizobium nodule symbiosis by shoot and root factors. Plant Physiol. 82 : 588-590 https://doi.org/10.1104/pp.82.2.588
  7. Denison, R. F., T R. Sinclair, R. W ZobeI, M. N. Johnson, and G. M. Drake. 1983. A non-destructive field assay for soybean nitrogen fixation by acetylene reduction. Plant Soil. 70 . 73-182
  8. Eskew, D. L., P. M. Gresshoff, M. Doty, and C. Mora. 1992. Sealed-tube combustion for natural $N^{15}$ abundance estimation of N fixation and application to supernodulating soybean mutants. Can. J. MicrobioI. 38 . 598-603 https://doi.org/10.1139/m92-099
  9. Fang, Y. and A. M. Hirsch. 1998. Studying early nodulin gene ENOD40 expression and induction by nodulation factor and cytokinin in transgenic alfalfa Plant Physiol 116 . 53-68 https://doi.org/10.1104/pp.116.1.53
  10. Gwata, E. T, D. S. Wofford, K. J Boote, and H. Mushoriwa 2003. Determination of effective nodulation in early Juvenile soybean plants for genetic and biotechnology study. African J. Biotech. 11 417-420
  11. Ha, B. K., J. S. Lee, K. I. Yun, H. S. Lee, E. H. Park, Y. W. Kim, and S H. Lee. 1999. Isolation and molecular characterization of hypernodulating soybean mutant. Korea Soybean Digest. 2 . 47-56
  12. Hansen, A. P. and S. Akao. 1991. Early nodule development of soybean cv. Bragg and some nodulation mutants in response to different levels of inoculation. J. Plant Physiol. 138 : 501-506 https://doi.org/10.1016/S0176-1617(11)80230-0
  13. Hansen, A. P, P. Martin, B. R. Buttery, and S J. Park. 1992. Nitrate inhibition of $N_2- fixation$ in Phaseolus vulgaris cv. OAC Rico and a supernodulating mutant. New Phytologist. 122: 611-615
  14. Hansen, A P., M B. Peoples, P. H Brown, B. J. Carroll, and P. M. Gresshoff. 1990 Nitrogen partitioning during early development of supernodulating soybean (Glycine max [L] Merrill) mutants and their wild-type parent J Exp. Bot. 41 . 1239-1244 https://doi.org/10.1093/jxb/41.10.1239
  15. Hansen, A. P., M. B. Peoples, P. M. Gresshoff, C. A. Atkins, J. S. Pate, and B J. Carroll. 1989. Symbiotic performance of supernodulating soybean (Glycine max [L.] Merrill) mutants during development on different nitrogen regimes. J. Exp. Bot. 40 : 715-724 https://doi.org/10.1093/jxb/40.7.715
  16. Herridge, D. F. and I A. Rose. 1994. Heritability and repeatability of enhanced N fixation in early and late inbreeding generations of soybean. Crop Sci. 34 . 360-367 https://doi.org/10.2135/cropsci1994.0011183X003400020010x
  17. Hungria, M. and T. R. J. Bohrer. 2000. Vanability of nodulation and dinitrogen fixation capacity among soybean cultivars. BioI Fertil. Soils. 31 : 45-52 https://doi.org/10.1007/s003740050622
  18. Imaizumi-Anraku, H., H. Kouchi, K. Syono, S Akao, and M. Kawaguchi. 2000. AnalysIs of ENOD40 expression in alb1, a symbiotic mutant of Lotus japonicus that forms empty nodules with incompletely developed nodule vascular bundles. Mol. Gen. Genet. 264 : 402-410 https://doi.org/10.1007/s004380000330
  19. Israel, D. W., J. N. Mathis, W. M. Barbour, and G. H. Elkan 1986. Symbiotic effectiveness and host-stram interactions of Rhizobium fredil USDA 191 on different soybean cultivars. Appl. Environ. Mlcrobiol. 51 : 898-903
  20. Kosslak, R. M. and B. B. Bohlool. 1984. Suppression of nodule development on one side of a split-root system of soybean caused by prior inoculation of the other side Plant Physiol. 75 : 125-130 https://doi.org/10.1104/pp.75.1.125
  21. Lee, H. S., Y. A. Chae, E. H. Park, Y. W Kim, K. I. Yun, and S H Lee. 1997 Introduction, development, and characterization of supernodulating soybean mutant. I. Mutagenesis of soybean and selection of supernodulating soybean mutant. Korean. J. Crop Sci. 42 247-253
  22. Lee, H. S. and S. H. Lee. 1998. Introduction, development and characterization of supernodulating soybean mutant: Nitrate inhibition of nodulating and nitrogen fixation in supernodulating soybean mutant Korean J. Crop. Sci. 43 . 23-27
  23. Lobler, M. and A. M. Hirsch. 1993. A gene that encodes a prolinerich nodulin with limited homology to PsENOD 12 is expressed in the invasion zone of Rhizobium melioti-induced alfalfa root nodules Plant Physiol. 103 : 21-30 https://doi.org/10.1104/pp.103.1.21
  24. McClure, P. R., D. W. Israel, and R. J. Volk. 1980. Evaluation of the relative ureide content of xylem sap as an indicator of $N_2$ fixation. Plant Physiol. 66 : 720-725 https://doi.org/10.1104/pp.66.4.720
  25. Pierce, M. and W. D Bauer. 1983. A rapid regulatory response governing nodulation in soybean Plant Physiol. 73 : 286-290 https://doi.org/10.1104/pp.73.2.286
  26. Pulver, E. L., E. A. Kueneman, and V. Raga-Rao. 1985. Identification of promiscuous nodulating soybean efficient in nitrogen fixation. Crop Sci. 25 : 660-663 https://doi.org/10.2135/cropsci1985.0011183X002500040019x
  27. Sanginga, N., G Thottappilly, and K. Dashiell. 2000. Effectiveness of rhizobia nodulating recent promiscuous soybean selections in the moist savanna of Nigeria. Soil BioI. Biochem. 32 : 127-133 https://doi.org/10.1016/S0038-0717(99)00143-1
  28. Scheres, B., F. van Engelen, and E. van der Knaap. 1990. Sequential induction of nodulin gene expression in the developing pea nodule. Plant Cell 2 : 687-700 https://doi.org/10.1105/tpc.2.8.687
  29. Sinclair, T. R., A. R. Soffer, K. Hison, S L. Albrecht, and P. L. Phafler. 1991. Genotypic variation in soybean nodule numver and weight Crop Sci. 31 : 301-304 https://doi.org/10.2135/cropsci1991.0011183X003100020014x
  30. Szezyglowski, K , D. Hamburger, P. Kapranov, and F. J. de Bruijn. 1997. Construction of a Lotus japonicus late nodulin expressed sequence tag library and indenification of novel nodule-specific genes. Plant Physiol. 114 : 1335-1346 https://doi.org/10.1104/pp.114.4.1335
  31. Trevaskis, B., G. Colebath, G. Desbrosses, M. Wandrey, and S Wienkoop 2002. Differentiation of plant cells during symbiotic nitrogen fixation. Comparative and Functional Genomics. 3 : 151-157 https://doi.org/10.1002/cfg.155
  32. van Workum, W A , T S. van Slageren, A. A. N. van Brussel, and J. W. Kijne. 1998. Role of exopolysaccharides of Rhizobium Ieguminosarum bv viciae as host plant-specific molecules required for infection thread formation during nodulation of Vida sativa. Molecular Plant-Microbe Interaction. 111 . 1233-1241
  33. Winkler, R. D., D G. Blevins, J. C. Pollaco, and D. D. Randall. 1987. Ureide catabolism in soybeans. II Pathway of catabolism insm in intact leaf tissue. Plant Physiol. 83 : 585-591 https://doi.org/10.1104/pp.83.3.585
  34. Yelton, M. M., S. S Young, S. A. Edie, and S. T. Lim. 1983. Characterization of an effective salt-tolerant, fast-growing stram of Rhizobium japonicum. J. Gen. Microbiol. 129 : 1537-1547