초록
본 논문은 비단조적으로 변동하는 시계열자료를 단조적으로 변화하는 구간으로 분할하여 경향성을 분석함으로써 자료의 시변동에 대한 동질성을 향상시키고 그에 따라 경향성 분석기법의 탐지력을 향상시킬 수 있다는 가설을 전제로 하고 있다. 이를 검토하기 위한 기법으로서 시계열자료의 변동경향을 파악하기 위한 필터링 방법으로 LOWESS smoothing을 적용하였고, 시계열자료의 경향성분석은 seasonal Kendall test를 적용하였다. 인위적으로 발생시킨 시계열자료와 대청호의 수온, 유량, 기온, 일사량 등의 시계열자료를 대상으로 검토한 결과 비단조적인 변화를 보이는 시계열자료를 단조적인 변화구간으로 분할하여 경향성을 분석함으로써 자료의 변동 경향성과 기울기 판정의 정확도를 높일 수 있었다. 그리고, 자료의 시변동에 대한 동질성 향상은 계절 변동성의 동질성에 대한 변화를 보다 정확하게 분석하는데 도움을 주는 것으로 보였으며 이것은 자연현상에 대한 인간활동의 영향을 고찰할 수 있는 자료로서 앞으로 이에 대한 연구가 더 필요할 것으로 보인다. 본 논문에서 제시한 방법은 시계열자료의 단조적인 경향성을 분석하는 기법들에 대해 적용 가능하며, 이를 통하여 환경변화의 경향성에 대한 보다 정확한 분석과 판단이 가능해질 것으로 기대한다.
In this paper, a hypothesis is tested that division of non-monotonic time series into monotonic parts will improve the estimation of trends through increased homogeneity in direction of time-variation using LOWESS smoothing and seasonal Kendall test. From the trend analysis of generated time series and water temperature, discharge, air temperature and solar radiation of Lake Daechung, it is shown that the hypothesis is supported by improved estimation of trends and slopes. Also, characteristics in homogeneity variation of seasonal changes seems to be more clearly manifested as homogeneity in direction of time-variation is increased. And this will help understand the effects of human intervention on natural processes and seems to warrant more in-depth study on this subject. The proposed method can be used for trend analysis to detect monotonic trends and it is expected to improve understanding of long-term changes in natural environment.