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Abstract

For high-speed fuzzy control systems, an important problem is the improvement of speed for the fuzzy inference, particularly in the

consequent part and the defuzzification stage. This paper introduces an algorithm to map real values of the fuzzy membership functions in

the consequent part onto an integer grid, as well as a method of eliminating the unnecessary operations of the zero items in the
defuzzification stage, allowing a center of gravity method to be implemented with only integer additions and one integer division. A VHDL
implementation of the system is presented. The proposed system shows approximately an order of magnitude increase in speed as compared

with conventional methods while introducing only a minimal error and can be used in many fuzzy controller applications.
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1. Introduction

Fuzzy logic models are successfully being used in many
applications, including medical diagnosis, data mining, and
pattern recognition [7]. Most conventional fuzzy controllers use
floating-point operations in [0,1] for fuzzy computing [2,4] or a
lookup table (LUT) method [6] for computing membership
functions.

In fuzzy sets, all properties are expressed using membership
functions of the sets involved and the union, intersection, and
complements of these sets. Many floating-point operations are
required to calculate output values.

Defuzzification is a mapping from a space of fuzzy control
actions defined over an output universe of discourse into a
space of crisp control actions. For this operation, again a large
number of floating-point operations are performed. Thus,
defuzzification is usually one of the most time-consuming
procedures in fuzzy processing. Most fuzzy systems use the
center of gravity (COG) method to perform defuzzification, as
does the present paper.

In general arithmetic operations, the difference in the
execution speed between integer operations and floating-point
operations is quite large, typically a factor of ten. Although this
speed is different for each CPU, integer multiplication and
division are about ten times faster than floating point
multiplication and division. In cases involving complex and
large volumes of computations, as found in typical fuzzy
systems, the difference of speed can dominate overall system
performance.
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To overcome these problems, this paper uses Bresenham’s
scan line algorithm [3] to map the real values to a 400 x 30
integer grid. A method of eliminating the unnecessary
operations of the continuous zero items in the defuzzification
stage is also proposed. The proposed system is applied to a
truck backer-upper control system for performance evaluation
by software simulation. The proposed system is an order of
magnitude faster than the conventional methods using floating-
point operations and introduces only a minimal error.

The rest of this paper is organized as follows. Section 2
describes the proposed algorithm for the integer operations in
the consequent part and the defuzzification stage. We present
the integer mapping algorithm for the consequent part, the data
structure for the defuzzification stage, and the proposed COG
operations using integer addition operations. Section 3
describes the structure of the fuzzy processor developed to
implement the proposed algorithms. The following section
describes the simulation and analyzes the performance of the
algorithm using both high-level software implementation and
VHDL synthesis. Finally, concluding remarks are presented.

2. Very High-speed Fuzzy System Using Integer
Operations

In fuzzy inferencing, if fuzzy inputs are given as singleton
values, it takes little times to find a, the degree of fulfillment,
in each fuzzy rule. However, in the consequent part, it takes
much more time due to the many real-valued operations in [0,
1] corresponding to the universe of discourse. Also, in the
defuzzification stage, in order to find the center of gravity
(COG), many floating-point operations are required.



In this paper, we propose a new method to use only integer
operations in the consequent part and the defuzzification stage.
Here, we use an integer pixel grid in the consequent part
composed of 400 x 30 pixels. After computing the o value, it is
multiplied by 30 and converted to an integer, B, by rounding.
The B value is transferred to the consequent as a modified
degree of fulfillment.

2.1 Integer Mapping Algorithm

Integer mapping of the fuzzy membership function is the
first step in the proposed algorithm. We use Bresenham’s
algorithm [3] to calculate quantized y values in the given line
using only integer addition operations. Removing floating point
operations produces significant improvement in speed as
compared to conventional methods. In the integer grid, a line
can be represented by connecting the integer pixels from the
starting point pixel to the ending point pixel.

Using a mid-point technique [1], it is very efficient to
compute the next y pixel value at given x pixel value using only

integer additions. This procedure is as follows.
Let Fixy)=ax+ by + c=0.1f dy =y, - yp, and dx = x; —xy,
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test its sign. If the sign is positive, we select point (x + 1, y + 1)

as a next pixel. If the sign is negative, we select the point (x + 1,
). If d is the decision variable for this choice, then
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If d < 0, then the next pixel is (x, + /,3,), so we select
‘E’(East).

If d > 0, then the next pixel is (x, + /,y, + 1), so we select
‘NE’ (North East).

If 'E' is selected, the next mid-point is incremented by | in
the x direction. To find the next pixel, we have to compute the
amount of variation, AL, and update the decision variable d.

new

d =F(x,,+2,yp+%) =a(x,+2)+b(y, +%)+c

=2 +b
Ty 4dy - dx

—

o)

1 I
d W= F(xl’ +l’yl’ +E) = a(xp +l)+b(yp +E)+C

=ag+—

2 _, 2dy-dx

Very High—speed Integer Fuzzy Controller Using VHDL

AE=d,, —-d, =2dy

new

If 'NE' is selected, then ANE =d,,, —d, =2(dy— dx).

Following the above procedures, we test the sign of the
decision variable d, and update AE or ANE, depending on the
choice of the next pixel, incrementing x by 1 in every step.m

All of the pixels can be found using integer operations in this
procedure. Figure 1 shows the algorithm for integer line
mapping with start point (x;,y) and end point (x,,y»). Here, f is
the modified degree of fulfillment and has an integer value in
the range 0 < B < 30. The value defuzz(xa) is the value of the
membership function in the consequent part when the value of
the integer pixel in the x-axis is xa. Figure 2 shows the
construction of a line segment from point (5,8) to (9,11) using
this algorithm.

procedure
. xa«—xat1
left_line .
b N begin
egin
g if (d<0)
dx«—X,-X,
ded+2dy
dy—ysyi
else
d«—2dy-dx
ya«—ya+l
Xae—X;
de—d+2(dy-dx)
Ya<y,
end
a«—
defuzz(xa)«ya
defuzz(xa)—ya
end

while ya <a+1 do
begin

end.

Figure 1. Integer mapping algorithm (left_line).
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Figure 2. Construction of a line segment.

Next, we describe the mapping procedures of the line (b) and
(c), the remaining portions of the membership function, as
shown in Figure 3.

Because the required part in the defuzzification stage is in
trapezoidal form, the part from integer 3+1 to 30 in the y-axis
point does not need mapping. Therefore, we must have
mappings until the value of y is B. In order to map the
membership function in Figure 3, we first process line segment
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Figure 3. Representation of the consequent part using 3
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(a), then (c), and finally (b), following the order (a)—(c)—(b).
Following this order calculates the endpoints of segment (b)
before it is processed.

The process for calculating the integer mapping in line (c) is
similar to the process used to map line (a), except x is
decremented for each iteration.

1 1, = _g+2
d :F(xp—l,yp+5)=a(xp—l)+b(yp‘+5)+c— a+2

start

_,-2dy—dx

If d <0, we select ' NW'. If d > 0, we select ‘W’.

If 'NW' is selected, the next mid-point is decremented by 1 in
the x direction and is incremented by 1 in the y direction. To
find the next pixel, we compute the amount of variation, ANW,
and update the decision variable d.

ANW =d,,,, ~d,,, = =2dy—2dx = =2dy+dx) [y
AW =d,, ~d,, ==2dy

is selected,
as the similar way,

After mapping lines (a) and (c¢) to the integer pixels, the final
task is the mapping of line (b) to the grid. To map line (b), we
must set y = B for all pixels from point (x,,) to (x,,). These
two points are the ending points previously computed in lines
(a) and (c). Therefore, all y values are set to f in the interval of
the x-axis from x, to x,.

This integer mapping method offers a significant advantage
over the methods that use floating-point operations, as it avoids
the floating-point operations. However, this does require a
tradeoff. In this algorithm, a quantization error between the real
v value and its equivalent integer pixel y value exists because
this method selects the nearer integer pixel among two
neighboring pixels. This quantization error is inversely
proportional to the number of y-axis integer pixels. The root
mean square value of the quantization error decreases as the
number of y-axis integer pixels increases [5]. In spite of this
drawback, . the increase in speed justifies the use of this
procedure for application that can tolerate the small error it
introduces. In practice, the size of the y-axis pixels can be
adjusted according to the application domain.
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2.2 Data Structure in the Defuzzification

In this paper, we use COG method for defuzzification. The
required data structure in the defuzzification stage is an integer
array that can store the y-axis integer values corresponding to
the 400 x-axis integer pixels in the consequent part. In this
array, defuzz(x), the y-axis integer values from 0 to 30 are
stored. On computing the consequent part, this array must
contain the maximum values in all fuzzy rules. Figure 4 shows
the algorithm for this function.

begin
integer array defuzz[1:m]
integer array max[1:m]—0

for 1=1 step 1 until » do
begin
for /=1 step | until m do
Begin

operation of integer pixel mapping

return value « defuzz(1:m)

if max( J ) < defuzz( J ) ]
then max( J ) « defuzz (] )
end
end
end.

Figure 4. Update algorithm of Max value

Here, # is the number of the fuzzy rules, and m is the number
of the pixels in the x-axis.

After computing the consequent part, in general, many
values of defuzz(x) have values of zero continuously from
either end of the array. It is not necessary to compute any
operations in that interval less than Jower or greater than upper
in the defuzzification process. To overcome this problem, we
check x; and x; for each fuzzy rule, setting lower to the
minimum of all x; and upper to the maximum of all x;.

2.3 New COG Operation Without Multiplications

In conventional fuzzy systems, the center of gravity,
computation requires 2(n-1) additions, » multiplications and
one division. In this paper, we also propose an algorithm to
reduce the computation times for the multiplications that uses
only integer additions to calculate the nominator of the COG
operation. One integer division operation is still needed to
compute the final COG. Figure 5 shows the algorithm to
compute the nominator of the COG function.

for i := upper step = —1 until lower
begin



temp «— defuzz( i ) + temp
sum «— sum + temp
end
COG « sum/ temp
COG « COG + (Jlower - 1)

Figure 5. The proposed algorithm for COG operations

The final “temp” value in Figure 5 becomes the denominator.

In this method, for n non-zero items, only 2x additions and 1
division are required. Table 1 compares the conventional
method without considering the non-zero items, the
conventional method considering the non-zero items, and the
proposed method. Note that the proposed method does not

require any multiplications. Here, 1 < lower < upper < 400.

Table 1: Comparison of arithmetic operations in Center of
Gravity calculations

additions multiplications | divisions
Conventional 2 x (400 — 400 1
method without 1)
considering
non-zero items
Conventional 2xT T 1
method
considering
non-zero items
Proposed 2xT 0 1
method

T = upper — lower + 1

3. Hardware Structure of the Proposed Fuzzy
Processor

3.1 Entire Structure and Operations

The structure of the proposed one-chip fuzzy processor is
shown in Figure 6. It contains modules of rule control interface,
integer mapping, defuzzification, and memory. The ROM
stores all conditions to be processed from the conditional part
in the rule interface.

The operation of the fuzzy processor is activated from the
reset signal. First, in the rule control module, the points of (x1,
0), (x2, 30), (x3, 0) and P in the ROM are transferred to the
mapping module. In the mapping module, y-coordinates (0-30)
are computed according to the x-coordinates (1-400) and this
module compares that value and the content of the addressed
RAM so that the larger one is saved to RAM.

If start_rule = 'I', then the computed y value is saved to
RAM, and all '0' data is saved to the addresses (1-x1) and (x3—
400). After saving, this module signals to the rule control
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module in order to receive the next data. After receiving the
final data, the control signal is sent to the Defuzzy module.
Afier reading the contents in the RAM, this module performs
additions and one division operation and computes and output
the COG.

@\ reset reset_rule f——
end_ruis next_ruis 1=
] cog_end cog_init
] nap_end
Control Logic

clk L 2 *
Lc\k end_rule ——Lc\x Lclk finisn —"mish >

" resat_rule start_ruis start_rute finish f— —® init
L next_rule  rule_out init Tower lower €06 3 COG
beta beta upper upper

1 x1
x2 x2 data_in

%3 x3
ROM
cata_out

agdress [— address
data_in we
s | Defuzzy

A

Rule Control

> MUX

LD address 0
data

"o

Figure 6. Block diagram of proposed processor

3.2 Rule Control Module

The data format for the rule control module is shown in
Figure 7 to process in the conclusion part by using data in
conditional part. This data format is composed of 9-bit x 4.

o]

7 654321

(=]

LSB|s

> =
() —_ =

2

X

;I

MSBIx3
Figure 7. Data format for the rule control module

Here, start rule and end rule are control signals for
controlling each module. The values of x1, x2, x3 and f are
transferred to the mapping module for computing in the
conclusion part.

If end_rule = 1, the mapping module is finished, all final
results are saved to RAM and control is transferred to the
Defuzzy module for defuzzification.

3.3 Mapping Module

The mapping module is composed of Pre process, Left,
Right, Middle, and Zero modules. In mapping module, the
following three operations are needed.
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(1) With the data from the rule control module, integer
mapping processes are performed at each lower module
using only integer operations.

(2) The mapping results are compared with RAM and saved
to RAM.

(3) The values of lower and upper are updated for the
defuzzification process.

To share RAM with the other modules, the finish signal is
introduced. So while the mapping module is using memory, the
finish signal is reset. The finish signal is set when that module
is finished. The structure of the mapping module is shown in

Figure 8.
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Figure 8. Block diagram of the Mapping module

3.3.1 Pre_process Module

This module inputs the values of x1, x2 and x3 and outputs
the values of d1, E, NE, d2, W and NW for initial values of
integer mapping operations.

3.3.2 Left Module

This module receives the values of x1, 3, di, N and NE for
mapping the (a) part of Figure 3. This module computes the y-
coordinate based on the x-coordinate from x1. When rule_start
="'0, the greater of the computed value and the stored value in
the RAM is saved to RAM; if rule_start = '1", the computed
value is saved to RAM. Here, if the computed y value is equal
to the B, and the corresponding x value is xa, the value of xa is
output and control is transferred to the Right module.

3.3.3 Right Module

This module receives the values of x3, beta, d2, W and NW
for mapping the (c) part of Figure 3 in a process similar to that
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used by the left module. Here, if the computed y value is equal
to the [3, the corresponding x value of xb is output and control
is transferred to Middle module.

3.3.4 Middle module

This module receives the values of xa (from Left), xb (from
Right) and beta for mapping the (b) part of Figure 3. This
module computes the y-coordinate for x-coordinates from xa.
When rule_start ='0', the larger of the value in the RAM and B
is saved to RAM. In the case of rule_start = 'l', B is saved to
RAM. After repeating the same operation until x is equal to xb,
control is transferred to the Zero module.

3.3.5 Zero module

When start_rule = 'l', it initializes the contents of RAM,
setting locations 1-x1 and x3-400 to 0, and outputting the finish
signal. When start_rule ='0", no operations are performed and it
outputs the finish signal.

3.4 Defuzzy module

In the Defuzzy module, the COG is computed by referencing
RAM where the final data in the conclusion part are saved. The
defuzzy module is composed of Cog add and Cog_divide
modules; its structure is shown in Figure 9.

Lo

: | finish
| O S e Gog diide

Figure 9. Block diagram of the Defuzzy module

3.5 Memory

To store the pixels, we use 5-bitx512 RAM. Through the
MUX, input and output operations to read and write RAM can
be performed. We also use 9-bitx512 ROM to interface the data
in the condition part. As 9-bitx4 of storage space is needed to
input one condition, up to 128 conditions are allowed. We used
the LPM _ROM component of LPM Library and
LPM_RAM_DQ component for implementing ROM and RAM

4. Simulation and Performance Analysis

To analyze the performance of the proposed method, we
simulated it using both high-level programs and VHDL
synthesis. First, algorithms of the truck backer-upper control
system for both methods were coded in C/C++ and execution



speeds were timed. By using only integer operations, the
proposed algorithm executed approximately 12.75 times faster
than the traditional algorithm that uses floating point operations.

We also developed a VHDL implementation of the proposed
algorithm and compared its performance to that of the
traditional algorithm. For this implementation, the proposed
algorithm reduced the time needed to calculate system outputs
by an order of magnitude. Both the software and VHDL
simulation results are consistent with the speedup achieved; see

Figure 10.

i s cos D1 i &

Figure 10. Timing analysis of the VHDL design

Finally, we note that it is possible to improve the
performance of the proposed algorithm by utilizing parallel
processing techniques. For example, the functions for line
segments (a) and (c) in the Figure 3 are independent and can be
calculated in parallel. In addition, the points on line segment
(b) in that figure are also independent of each other and do not
have to be calculated sequentially. For membership functions
that are symmetric, it is also possible to calculate only the
points on line segment (a) and then make use of symmetry to
generate the points on (c) without significant computations.

5. Conclusion

This paper has presented a method to improve the speed of
fuzzy control systems by using integer representations of
membership functions and integer operations. A method for
calculating the COG function without multiplications reduces
A  VHDL
implementation is presented. Based on simulation results, the

the execution time of the algorithm.
proposed method offers a speedup over the conventional
method of approximately an order of magnitude. This system
can also be applied to build powerful architectures for control
applications, such as robotic control, with time-critical sensor

integration.
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