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Abstract

In this paper, we propose a new design method of Genetic Algorithm Processor(GAP) and Evolvable Hardware(EHW). All sorts of creature
evolve its structure or shape in order to adapt itself to environments. Evolutionary Computation based on the process of natural selection not
only searches the quasi-optimal solution through the evolution process, but also changes the structure to get best results. On the other hand,
Genetic Algorithm(GA) is good for finding solutions of complex optimization problems. However, it has a major drawback, which is its
slow "execution speed when is implemented in software of a conventional computer. Parallel processing has been one approach to overcome
the speed problem of GA. In a point of view of GA, long bit string length caused the system of GA to spend much time that clear up the
problem. Evolvable Hardware refers to the automation of electronic circuit design through artificial evolution, and is currently increased
with the interested topic in a research domain and an engineering methodology. The studies of EHW generally use the XC6200 of Xilinx.
The structure of XC6200 can configure with gate unit. Each unit has connected up, down, right and left cell. But the products can't use
because had sterilized. So this paper uses Vertex-E (XCV2000E). The cell of FPGA is made up of Configuration Logic Block (CLB) and

can't reconfigure with gate unit. This paper uses Vertex-E is composed of the component as cell of XC6200 cell in VertexE
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1. Introduction

The evolution is basically the process of self-copy with
inherited variation. Therefore the software evolution get
accomplished by executing the self-copy program made by
machine language in the virtual world of computer which have
the tool making mutant. How do hardware evolution proceed?
It needs the hardware of structure that can mutate gene and do
self-copy as software evolution.

Reconfigurable hardware is applied to the many fields
because it can configure logic circuit of a variety of structure
without semi-conductor manufacturing process. Also it can
make a robust hardware system to adapt environment variation.

Evolvable Hardware (EHW) is a new concept toward the
development of on-line adaptive machines. The most apparent
distinction between conventional hardware (CHW) and EHW is
as follows. The design of CHW cannot be started unless
hardware specifications are given to the designer. In contrast,
EHW can be used in situations where no one knows the desired
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hardware specification in advance. EHW can reconfigure its
hardware structure by genetic learning [1]. EHW tries to attain
the following two goals by implementing adaptive machines.
First is the development of a new type of fault-tolerant systems
where EHW changes its own hardware architecture to adapt to
changes in the environment. The second is the development of
an innovative machine learning system based on EHW. It is
capable of storing the learned result directly in the hardware
structure. This leads to a new learning paradigm totally
different form artificial neural network and other rule-based
systems [2].

EHW uses Genetic Algorithm (GA). Because the size of
hardware is not change, the change that this paper says is the
redundancy to make a digital logic. Recently there are the
applications of embryology [3] and Genetic Programming [4]
and so on.

Evolutionary Computation is model on the process of natural
evolution. Not only it searches the right solution, but also
changes the structure to get results. Genetic Algorithm (GA) is
applied to various fields because it is simple to theory and easy
to application. GA is good at finding solutions for complex
optimization problems. GA has a major drawback [5], which is
its slow execution speed when is implemented in software of a
conventional computer. Parallel
approached overcoming the speed problem of GA.

processing has been
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More recently, engineers have been allured by certain natural
processes, giving birth to such domains as artificial neural
networks and evolutionary computation. Living organisms are
complex systems exhibiting a range of desirable characteristics,
such as evolution, adaptation, and fault tolerance, that have
proved difficult to realize using traditional engineering
methodologies. Such systems are characterized by a genetic
program, the genome, that guides their development, their
functioning, and their death. If one considers life on Earth since
its very beginning, then the following three levels of
organization can be distinguished [6].

@ Phylogeny: The first level concerns the temporal evolution
of the genetic program, the hallmark of which is the
evolution of species, or phylogeny. The multiplication of
living organisms is based upon the reproduction of the
program, subject to an extremely low error rate at the
individual level, so as to ensure that the identity of the
offspring remains practically unchanged. Mutation (asexual
reproduction) or mutation along with recombination (sexual
reproduction) give rise to the emergence of new organisms.
The phylogenetic  mechanisms are fundamentally
nondeterministic, with the mutation and recombination rate
providing a major source of diversity. This diversity is
indispensable for the survival of living species, for their
continuous adaptation to a changing environment, and for
the appearance of new species.

®© Ontogeny: Upon the appearance of multicellular organisms,
a second level of biological organization manifests itself,
The successive divisions of the mother cell, the zygote, with
each newly formed cell possessing a copy of the original
genome, is followed by a specialization of the daughter cells
in accordance with their surroundings, i. e., their position
within the ensemble. This latter phase is known as cellular
differentiation. Ontogeny is thus the developmental process
of a multicellular organism. This process is essentially
deterministic: an error in a single base within the genome
can provoke an ontogenetic sequence which results in
notable, possibly lethal, malformations.

® Epigenesis: The ontogenetic program is limited in the
amount of information that can be stored, thereby rendering
the complete specification of the organism impossible. A
well-known example is that of the human brain with some
10'° neurons and 10" connections, far too large a number to
be completely specified in the four-character genome of
length approximately 3x10°. Therefore, upon reaching a
certain level of complexity, there must emerge a different
process that permits the individual to integrate the vast
quantity of interactions with the outside world. This process
is known as epigenesis and primarily includes the nervous
system, the immune system, and the endocrine system.
These systems are characterized by the possession of a basic
structure that is entirely defined by the genome (the innate
part), which is then subjected to modification through
lifetime interactions of the individual with the environment

(the acquired part). The epigenetic processes can be loosely

grouped under the heading of learning systems.

In analogy to nature, the space of bio-inspired hardware
systems can be partitioned along these three axes: phylogeny,
ontogeny, and epigenesis; we refer to this as the POE model [7]
The distinction between the axes cannot be easily drawn where
nature is concerned; indeed the definitions themselves may be
subject to discussion. We therefore define each of the above
axes within the framework of the POE model as follows: the
phylogenetic axis involves evolution, the ontogenetic axis
involves the development of a single individual from its own
genetic material, essentially without environmental interactions
and the epigenetic axis through
environmental interactions that take place after formation of the
individual. As an example, consider the following three
paradigms, whose hardware implementations can be positioned
along the POE axes: (P) evolutionary algorithms are the
(simplified) artificial counterpart of phylogeny in nature, (O)

involves learning

muiticellular automata are based on the concept of ontogeny,
where a single mother cell gives rise, through multiple
divisions, to a multicellular organism, and (E) artificial neural
networks embody the epigenetic process, where the system's
synaptic weights and perhaps topological structure change
through interactions with the environment. Within the domains
collectively referred to as soft computing [4], often involving
the solution of ill-defined problems coupled with the need for
continual adaptation or evolution, the above paradigms yield
impressive results, frequently rivaling those of traditional
methods.

2. Evolvable Hardware

In this section we explore the phylogenetic axis of
bioinspired systems, also referred to as evolvable hardware.
The main motivation is to attain adaptive systems that are able
to accomplish difficult tasks, possibly involving real-time
behavior in a complex, dynamical environment. We begin by
briefly introducing two underlying themes, artificial evolution
and large-scale programmable circuits.

2.1 Artificial Evolution

The idea of applying the biological principle of natural
evolution to artificial systems, introduced more than three
decades ago, has seen impressive growth in the past few years.
Usually grouped under the term evolutionary algorithms or
evolutionary computation, we find the domains of genetic
algorithms, evolution strategies, evolutionary programming,
and genetic programming [8]. As a generic example of artificial
evolution, we consider genetic algorithms [9). A genetic
algorithm is an iterative procedure that consists of a constant-
size population of individuals, each one represented by a finite
string of symbols, known as the genome, encoding a possible
solution in a given problem space. This space, referred to as the
search space, comprises all possible solutions to the problem at
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hand. The algorithm sets out with an initial population of
individuals that is generated at random or heuristically. At
every evolutionary step, known as a generation, the individuals
in the current population are decoded and evaluated according
to some predefined quality criterion, referred to as the fitness,
or fitness function. To form a new population, individuals are
selected according to their fitness and then transformed via
genetically inspired operators, of which the most well known
are crossover and mutation. Iterating this procedure, the genetic
algorithm may eventually find an acceptable solution, i. e., one
with high fitness. Evolutionary algorithms are common
nowadays, having been successfully applied to numerous
problems from different domains, including optimization,
automatic machine
immune systems, ecology, population genetics, studies of
evolution and learning, and social systems.

programming, learning, economics,

2.2 Large-Scale Programmable Circuits

An integrated circuit is called programmable when the user
can configure its function by programming. The circuit is
delivered after manufacturing in a generic state and the user
can adapt it by programming a particular function. In this paper
we consider solely programmable logic circuits, where the
programmable function is a logic one, ranging from simple
Boolean functions to complex state machines. The programmed
function is coded as a string of bits representing the
configuration of the circuit. Note that there is a difference
between programming a standard microprocessor chip and
programming a programmable circuit-the former involves the
specification of a sequence of actions, or instructions, while the
latter involves a configuration of the machine itself, often at the
gate level. The first programmable circuits allowed the
implementation of logic circuits that were expressed as a logic
sum of products. These are the PLD's (programmable logic
devices), whose most popular version is the PAL (programmable
array logic). More recently a novel technology has emerged,
affording higher flexibility and more complex functionality: the
field programmable gate array (FPGA) [10]. An FPGA is an
array of logic cells placed in an infrastructure of interconnections,
which can be programmed at three distinct levels:

(a) the function of the logic cells.
(b) the interconnections between cells.
(c) the inputs and outputs.

All three levels are configured via a string of bits that is
loaded from an external source, either once or several times. In
the latter case the FPGA is considered reconfigurable. FPGA's
are highly versatile devices that offer the designer a wide range
of design choices. This potential power, however, necessitates a
suite of tools to design a system. Essentially, these generate the
configuration bit string, given such inputs as a logic diagram or
a high-level functional description.

2.3 Research of Evolvable Hardware

If one carefully examines the work carried out to date under
the heading evolvable hardware, it becomes evident that this
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mostly involves the application of evolutionary algorithms to
the synthesis of digital systems [10]. From this perspective,
evolvable hardware is simply a subdomain of artificial
evolution, where the final goal is the synthesis of an electronic
circuit. The work of Koza [11], which includes the application
of genetic programming to the evolution of a three-variable
multiplexer and a two-bit adder, may be considered an early
precursor along this line. It should be noted that at the time the
main goal was that of demonstrating the capabilities of the
genetic programming methodology, rather than designing
actual circuits. We argue that the term evolutionary circuit
design would be more descriptive of such work than that of
evolvable hardware. For now, we shall remain with the latter
term.

Evolvable hardware, taken as a design methodology, offers a
major advantage over classical methods. The designer's job is
reduced to constructing the evolutionary setup, which involves
specifying the circuit requirements, the basic elements, and the
testing scheme used to assign fitness. If these have been well
designed, evolution may then generate the desired circuit.
Currently, most evolved digital designs are suboptimal with
respect to traditional methodologies; however, improved results
are regularly demonstrated. When examining work carried out
to date, one can derive a rough classification of current
evolvable hardware, in accordance with the genome encoding,
and the calculation of a circuit's fitness.

(1) Genome Encoding: High-level languages. Using a high-
level functional language to encode the circuits in question
means that the final solution must be transformed to obtain an
actual circuit. Thus, such a representation is far removed from
the structural description. The evolved solution is a program
describing the multiplexer or adder rather than an
interconnection diagram of logic elements.

Low-level languages. The idea of directly incorporating the
bit string representing the configuration of a programmable
circuit within the genome was expressed early on by Atmar
[12] and more recently by de Garis [13] and Higuchi et al. [14].
As a first step one must choose the basic logic gates (e.g., AND,
OR, and NOT) and suitably codify them, along with the
interconnections between gates, to produce the genome
encoding. An example of this approach is offered in [15].
Higuchi et al. [13] used a low-level bit string representation of
the system's logic diagram to describe small-scale PAL's,
where the circuit is restricted to a logic sum of products. The
limitations of the PAL circuits have been overcome to a large
extent by the introduction of FPGA's, as used, e.g., by
Thompson [15]. The use of a low-level circuit description that
requires no further transformation is an important step forward
since this potentially enables placing the genome directly in the
actual circuit, thus paving the way toward truly evolvable
hardware. Until recently, however, FPGA's had presented two
major problems:

(1) the genome's length was on the order of tens of thousands
of bits, rendering evolution practically impossible using current
technology.
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(2) within the circuit space, consisting of all representable‘
circuits, a large number were invalid (e.g., containing short
circuits). With the introduction of the new family of FPGA's,
the Xilinx 6200 {16]

These problems have been reduced. As with previous FPGA
families, there is a direct correspondence between the bit string
of a cell and the actual logic circuit; however, this now always
leads to a viable system. Moreover, as opposed to previous
FPGA's where one had to configure the entire system, the new
family permits the separate configuration of each cell, a
markedly faster and more flexible process.

Thompson has employed this latter characteristic to reduce
the genome's size, without, however, introducing real-time,
partial system reconfigurations.

(2) Fitness Calculation: Off-line evolvable hardware. The use
of a high-level language for the genome representation means
that one has to transform the encoded system to evaluate its
fitness. This is carried out by simulation, with only the final
solution found by evolution actually implemented in hardware.
This form of simulated evolution is known as off-line evolvable
hardware.

On-line evolvable hardware. As noted above, the low level
genome representation enables a direct configuration of the
circuit, thus entailing the possibility of using real hardware
during the evolutionary process. D. Common Features of
Current Phylogenetic Hardware Examining work carried out to
date we find many common characteristics that span most
current systems, both on-line and off-line, often differing from
biological evolution.

Evolution pursues a predefined goal: the design of an
electronic circuit, subject to precise specifications. Upon
finding the desired circuit, the evolutionary process
terminates. The population has no material existence. At best,
in what has been called on-line evolution, there is one circuit
available, onto which individuals from the (offline) population
are loaded one at a time, to evaluate their fitness. The absence
of a real which individuals
simultaneously entails notable difficulties in the realization of

population in coexist
interactions between "organisms." This usually results in a
completely independent fitness calculation, contrary to nature
which exhibits a coevolutionary scenario.

If one attempts to resolve a well-defined problem, involving
the search for a specific combinatorial or sequential logic
system, there are no intermediate approximations. Fitness
calculation is carried out by consulting a lookup table which is
a complete description of the circuit in question, that must be
stored somewhere. This casts some doubts as to the utility of
applying an evolutionary process, since one can directly
implement the lookup table in a memory device, a solution
which may often be faster and cheaper. The evolutionary
mechanisms are executed outside the resulting circuit. This
includes the operators as well as fitness calculation. As for the
latter, while what has been advanced as on-line evolution uses a
real circuit for fitness evaluation, the fitness values themselves

are stored elsewhere. The different phases of evolution are
carried out sequentially, controlled by a central software unit.

The evolutionary mechanisms are executed outside the
resulting circuit. This includes the operators as well as fitness
calculation. As for the latter, while what has been advanced as
on-line evolution uses a real circuit for fitness evaluation, the
fitness values themselves are stored elsewhere. The different
phases of evolution are carried out sequentially, controlled by a
central software unit.

2.4 FPGA device

The studies of EHW generally use the XC6200 or GAL
[17][18]. FPGA are the preferred device for many groups
because they can be re-configured virtually instantaneously to
produce a physical circuit, which can be evaluated in real time
[19]. Fig. 1 is a simplified diagram showing the architecture of
the Xilinx XC6216 FPGA. The magnified view at the bottom
of the diagram is of the basic configurable element or cell.
Each cell can be connected to any of its adjacent neighbors
with further hierarchical interconnections possible. This
particular device used 64 X 64 cells totaling 4096. Despite this
large number of configurable elements and interconnections,
FPGA are far from ideal for hardware evolution for a number
of reasons. There is very little choice over the type of element
employed in commercial devices - the XC6200 series uses
simple Boolean function, while other FPGA employ higher-
level configurable logic blocks (CLB) such as adders and
multipliers [20]. Tt can configure by gate unit. Differently other
device, XC6200 is known to data format and can be changed in
one area of the device without affecting another area. The cell
of XC6200 put out the each output up, down, left, right. The
logic of each output is different: AND, OR, XOR and so on.
Because of this property, XC6200 series could be used in EHW,
But we use Vertex of Xilinx because it can't make general a
logic circuit.

There are two methods of EHW [21]: first method known as
Extrinsic EHW and is the evolution of electronic circuits
through simulation; at the end of each generation the best
individual is downloaded to the electronic device. The second
method, Intrinsic EHW, is when each genotype is assessed on
the device by downloading the new configuration and testing
the device directly. Intrinsic EHW, therefore, requires that the
hardware be reconfigured for each individual in every
generation. This means that the hardware requires the ability to
be reconfigured very quickly. We use GAP to reconfigure
EHW. This method is faster than intrinsic method.
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Fig. 1. The structure of XC6200

2.5 The structure of EHW at the vertex

We use the vertex to make GAP at FPGA. Loading
application-specific configuration data into internal memory
configures Vertex devices. Configuration is carried out using a
subset of the device pins, some of which are dedicated, while
others can be reused as general-purpose inputs and outputs after
configuration is complete.

The structure of Vertex is different with XC6200. Vertex is
composed of Configuration Logic Block (CLB) and can't
reconfigure by gate unit. It is composed of Lookup Table
(LUT) and Flip Flop. LUT can make some sequential logic that
has 4 inputs and 1 output. Each LUT output can connect to
three other LUTs in the same CLB. It can act fast local
feedback routing. CLBs are connected between adjacent they
increases the speed of designs.

For applying Vertex to the structure of XC6200, we have
made a component to use Verilog HDL. It makes to act as the
cell of XC6200. Each direction of function unit has two
configuration bits which make roles of AND, OR, NOT,
BUFFER. EHW of this paper is made up 36 cells. Each cell
outputs different signals because it is composed of different
function logic from inputs of 4 directions. Because of this
architecture, it can be composed of complex logic circuits.
EHW module is made of 36 cells. It needs 288 bits because
each cell needs 8 bits. It needs the repeated sequences of 9
times to configure 288 bit on EHW. We make EHW module by
this method. The cell is connected each other as the
components. The outer edge wires of EHW are inputs and
outputs. It is 24 bit because EHW is made of 36 cells.
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Fig. 2. The structure of EHW module.

There are another modules to evaluate fitness: 10 unit,
memory of evaluation vectors, counter and comparator. It uses
the evaluation vectors to make a logic circuit. The comparator
evaluates fitness to compare input-output pare with evaluation
vector, The controller of EHW is synchronized with GAP.

2.6 Design of state machine

State machine is a model of computation consisting of a set
of states, a start state, an input alphabet, and a transition
function that maps input symbols and current states to a next
state[22]. Computation begins in the start state with an input
string. It changes to new states depending on the transition
function. There are many variants, for instance, machines
having outputs associated with transitions or states, multiple
start states, transitions conditioned on no input symbol or more
than one transition for a given symbol and state, one or more
states designated as accepting states, etc [23].

To design state machine in the logic circuit, we must make
state diagram as Fig. 3. Then we make state table and state
transition table. Using it, we can compose a karnough map, and
then design a logic circuit. It is important fact that state-
machine is a feedback circuit because must know the current
state. Output of this state machine is the current state.

fw/{‘\\ﬁﬂi
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Fig. 3. State diagram. It changes by input data and current state.

To design state machine using EHW module, we make test
vector. Table 2 shows test vector that is used to make state
machine in the EHW module. The vector is serial data loaded
sequentially from memory. As show Table 2, output is different
as current state though input is same. Using test vector, we can
measure fitness. Fig. 4 shows a process to evaluate fitness. We
can know to compare memory data with EHW outputs. EHW
return the fitness to GAP. Then we can proceed to Genetic
Algorithm,
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Fig. 4. The waveform of EHW action.

3. Genetic Algorithm Processor(GAP)

3.1 Genetic Algorithm

John Holland, finding their inspiration in the evolutionary
process occurring in nature, invented Genetic Algorithm. The
main idea is that in order for a population of individuals to
collectively adapt to some environment, it should behave like
natural system: survival, and therefore reproduction, is
promoted by the elimination of useless of harmful traits and by
rewarding useful behavior. Holland's insight was in abstraction
the fundamental biological mechanisms that permit system
adaptation into a mathematically well-specified algorithm [24].

Genetic Algorithm (GA) has been used essentially for
searching and optimization problems and for machine learning.
However, it is still an unresolved question whether the natural
evolutionary process is really an optimization process.
Evolution is essentially one-shot experiment, although many
alternatives were tried along the way and discarded through the
selection process. GA is the iterative procedure that consists of
a constant-size population of individuals, each one represented
by a finite string of symbols encoding a possible solution in
some problem space. This space, also known as the search
space, comprises all possible solutions to the problem at hand.

However, GA has one major draw back, which is their slow
execution speed when implemented in software of a
conventional computer. Paraliel processing [25] has been one
approach to overcome the speed problem of GA. There is the
case used the multiple GAP [8]. In a point of view of GA, long
bit string length caused the system of GA to spend much time
that clear up the problem. It makes to slow the execution speed
of GA.

3.2 The structure of Genetic Algorithm Processor

This paper propose pipeline GAP to manage long bit sting
and to use efficiently the hardware resource. A genetic
algorithm processor can be constructed to directly execute the
operation of a genetic algorithm. Fig 5 shows the structure of
GAP. Such a processor can be used in situations where high
throughput is required and where the logic of the genetic
algorithm is expressible in simple units that can be synthesized
in hardware. This is generally the case as genetic algorithms are
inherently simple and contain only a few logic operations. The
whole GAP section was written in Verilog HDL(Hardware

Descriptive Language) and simulated and synthesized by
Xilinx software

Fig. 5. The structure of GAP

It is composed of five essential parts. First part is a crossover
module. It acts crossover operation. The mutation module acts
the one of 32 bits to compare random number with mutation
rate. So mutation rate should be lower than general Genetic
Algorithm. The elite module saves the fitness and the address
for individual of high fitness to reproduce and GA converges
much faster. Because GAP wastes many memories when it
save long bits, so it saves the only fitness and address for
efficiency. Because the nature is the complex system, we need
the random number for its imitation. The random number is
caused by follow.

Ri+1 =(A® R, +B)%M 1))

In upper equation, A, B and M are any numbers with no rule.
R; is a seed number, and initial R; is number counted clock.

In this Fig. 6, each data bus is 32 bits. But it manages much
long bit string because this process is the structure of pipeline.
The process is as follows. It loads the two of 32bits data from
the dual port memory. And it passes the data to crossover
module then loads again the 32 bits data. It loads long data by
this method. Because the datum has passed the mutation
module aretwo individuals, one individual is waiting during the
evaluation of another individual.

The operational sequence of the GAP controller is as
follows.

Table 1 is the control sequences that need to act GAP. For
generation and reproduction, the sequence is divided in two.
When the bit string is also more than 32 bits, some of the
sequence repeats to manage a serial of data pipeline GAP.
Specially time 0~4 among reproduction sequences are repeated
at different timing each time. We design the counter control
unit for these sequences. As show Fig. 6, this module is
composed of comparator and counter. A time signal is counter
signal of main clock number. But the repeated signals have
nothing to do the main clock. It related t[3:0] signals. The
comparator outputs a less signal until to satisfy the repeated
times. It repeats until to make bit string that Individual need.
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The down registers of Fig. 6 delay one clock for repeated
signal. The sequences are repeated by seach delayed signal.
Time 6 also repeated same as time 0~4. Time 7 is different
from repetition of time 0~4. It repeats to evaluate fitness in
evaluation module. The fitness evaluation module is different
as what it solves the problem. It means the time to evaluates
fitness. So fitness evaluation module outputs time-stop signals
during to measure fitness.

Memory address is divided in two. Main address and sub
address. Main address is address for individual and sub address
is address for long bit string. When bit string is long, main
address is fixed and sub address only increased. So address of
each individual is uniform, its fitness also saves a fixed
position.

GAP is efficient to long bit string because it has this
structure that can manage a variable bit string.

Table 1. The control sequences of GAP.

| . _.__ Generation |
. EHW _en, sel chrom(r_num) .
T - - - "I R 1
‘ ime 0 mem_in, inc_sub_add epeated signa {
[ Time 1] EHW_cn, EHW_inst, Id_sub_ad ]
| Time 2 I mem_in, clr_sub_addr, clk_rst ‘
L. . .. . Reproduction |
ddr_aj ddr_bi
Time | M M-A0Cr-Atn, mem_addr_bin, Repeated signal
inc_sub_ad
ITime 1 | cross_in, cross, clr_sub_ad | Repeated signal ‘
ITime 2] mutation_in ’ Repeated signal |
[Time 3 l EHW _en, sel chrom(a), fifo_ } Repeated signal l
lTime 4] EHW en, EHW eval, Id_sub_ad T
|Time 5 l mem_in, clr_sub_addr, sel_mem, clr_sub_ad |
EHW_en, fifo_aout, fifo_bout
. — bl ! o4 — 3y R . 1
Time 6 inc_sub_addr, sel_chrom(b) epeated signa
EHW _en, EHW eval
. _en, _eval, R iomal
Time 7 Id_sub_addr epeated signa
ITime 8 | mem_in, cir_sub_addr, sel_mem, clr_sub_addr
Fopearsd (m‘——.—L DA B SD @ time
QDB aiad
dzl; comparator Main
counter ;:::‘m
ak > ok >
o QY D Q D Q
etk ~] ik —D> ok >
«0) H1) 1(2) Y3)

Fig. 6. Counter control unit. [t needs to control iterative
sequences.
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4. Simulation Results

We have used as following table in all experiments. It is
numerical value that is used general. FPGA is acted by 100
Mhz. It is the time that a one-generation act is 22s. It is faster
than conventional computer that use Pentium4 1.4GHz. There
is no system that stores the process of hardware evolution. We
show sampling of the special part among evolution because we
see only short interval(0.5pus). '

Table 2. Genetic operator

Operator | k

Crossover rate ’ 0.8 '
Mutation rate 0.026
Population size 100

4.1 Test of Genetic Algorithm Processor

We tested to confirm the action and the performance of
GAP. In the first place, The solution of Linear function is found
by GAP. Fig. 7 shows the results of test. It shows through elite
individuals of test how the solution evolves. Fitness normalized
to 100. As shows, because of the simple problem, it has high
fitness initially, converges about 20 generation.

Fig. 8 is displaying the result of one max problem. One max
problem is how many one the bit string has. Fitness advances
slowly because it changes by mutation rather than crossover.
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Fig. 7. The solution of linear equation
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In order to verify the performance of pipeline structure, We
tested 64 bits one max problem. It can check up on pipeline
GAP because chromosome is acted during two clocks. The
result of test is Fig. 9. We can know for GAP to act normally
because it converges on 64. It takes longer than 32 bits one max
problem because of 2 times length.
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Fig. 9. The solution of one max problem (64bits)

For next, we will consider the NP-hard set covering problem
{26]. The set covering problem is an optimization problem that
models many resource selection problems and is important for
logic circuit minimization [27].

The set covering problem can be defined as follows: given a
collection C of finite sets, each with non-negative cost, find a
minimum-cost sub-collection C' such that every element within
the sets in C belongs to at least one set in C'.

Fig. 10 show the result of test. It also converges initially in
the same result as former experiments.
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Fig. 10. Set Covering problem.

4.2 Test of Evolvable Hardware

We tested to design the 3 bits adder at Evolvable Hardware.
It has fitness-64 When hardware evolves finally because all
cases of 3 bits adder is 2°. It doesn't make the 3 bits adder. Fig,
11 shows the fitness of evolution process. It has converged
fitness-20 at 20000 generation. It causes effect to have the
EHW cell of small number. So we increase the number of
EHW cell from 6x6 to 6x12. Fig. 12 shows the result of it. It
increases fitness-47 but converges on that point. We can
increase the EHW cell because it is small the memory of
VertexE.
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Fig. 11. 3bits adder of Evolvable Hardware (6x6)
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Fig. 12. 3bits adder of Evolvable Hardware (6x12)

5. Conclusion

This paper proposes the design method of logic circuit using
GAP and EHW. We have addressed the problem of slow
execution speed of software implementation of the genetic
algorithm by design a pipelined genetic algorithm processor
that can managed chromosome per machine cycle. It solves the
problem without special knowledge as the machine evolves by
it self when appears the problem. GA in the hardware shows
faster then software. GAP supplements drawback of GA, which
has many computation quantity. GAP can be used to general
processor to find optimal solution because can handle variant
bit. Also it is composed of pipeline, saves resource of FPGA
when it manages long bit string. The total modules of this paper
can be applied to EHW of other structure because GAP can
manage variant bit string.

EHW download a configuration bits using the intrinsic
method, but this paper shows one chip EHW It can evolve
much faster than intrinsic method because reconfigure
hardware. Also it can make complex logic circuit by connected
the cell to 4 directions. It can't makes the digital circuit
completely but shows the possibility of Evolvable Hardware. It
need more memory than VertexE to make the complex circuit.
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