International Journal of Fuzzy Logic and Intelligent Systems, vol. 5, no. 3, September 2005 pp. 183-195

Concord: A Proactive Lightweight Middleware to Enable Seamless
Connectivity in a Pervasive Environment

Sam Hsu*, Mahesh Mutha**, A.S. Pandya* and YoungUhg Lho***

* Dept. of Computer Science and Engineering, Florida Atlantic University, USA
** Motorola Inc., Plantation, Florida, USA

*¥** Dept of Computer Education, Silla University, Korea

Abstract

One of the major components of any pervasive system is its proactive behavior. Various models have been developed to provide
system wide changes which would enable proactive behavior. A major drawback of these approaches is that they do not address
the need to make use of existing applications without modifying the applications. To overcome this drawback, a middleware
architecture called "Concord" is proposed. Concord is based on a simple model which consists of Lookup Server and Database.
The rewards for this simple model are many. First, Concord uses the existing computing infrastructure. Second, Concord
standardizes the interfaces for all services and platforms. Third, new services can be added dynamically without any need for
reconfiguration. Finally, Concord consists of Database that can maintain and publish the active set of available resources. Thus
Concord provides a solid system for integration of various entities to provide seamless connectivity and enable proactive

behavior.

Key words :

1. Introduction

Pervasive computing is a trend towards an increasingly
ubiquitous and connected computing devices communicating
through interconnected networks[1] The major implications of
this revolutionary technology can best be understood in terms
of the realities and problems of using computer devices, and
attempts to provide better solutions to tackle such problems
and make life simpler and easier. Typical requirements of per-
vasive computing system are as follows[2, 3]. The system
shall be dynamic at load-time. The system shall be able to
discover and compose the services that are available in the
physical environment. The computing devices shall be able to
store program and user data in a local database. The comput-
ing devices shall be able to communicate with the network
middleware. The communication mechanism shall allow the
user to roam transparently between computing contexts. The
computing devices shall support a wireless link. The wireless
infrastructure shall support seamless roaming between short
and long-range connections. Various models are currently be-
ing pursued to satisfy one or many of these requirements.
Aura(Carnegie Mellon)[8], Oxygen(MIT) {7], Gaia[16] and
PICO[17] are four such models. These models propose design
changes in the way the system and computing devices are
designed. A major drawback of these approaches is that they
do not answer the need to make use of extant applications
without changing the original designs of the applications to fit
into the new environments.

In this paper a middleware architecture referred to as

Manuscript received May 27, 2005; revised July 21, 2005.

middleware, pervasive computing, ubiquitous, proactive behavior, Concord

"Concord" is proposed to overcome the above drawback.
Concord is based on a simple model which consists of
Lookup Server and Database. The rewards for this simple
model are as follows. Concord consists of Database which en-
ables it to maintain and publish the active set of available
resources. Concord standardizes the interfaces for all services
and platforms. Concord wuses the existing computing
infrastructure. New services can be added dynamically without
any need for reconfiguration. Section 2 provides an overview
of the requirements of a good pervasive system and the vari-
ous ongeing efforts in this field. Concord is proposed based
on the outlined system requirements and the identified short-
comings of the various ongoing efforts. Section 3 discusses
the architecture details of Concord. In section 4 a detailed ex-
planation of Concord is provided with the help of a detailed
system architecture diagram. Capabilities of Concord are dem-
onstrated using real life scenarios, appropriate block diagrams
and sequence diagrams. The details of inner-working of the
design are included in order to provide a better understanding
of how Concord enables proactive behavior in dormant
environment.

2. Requirements of a Pervasive Computing
System

In this section we will discuss the technical requirements
for implementing a successful pervasive computing model.

2.1 Device Requirements

a) The output mechanism should allow for visual, tactile, au-

189

International Journal of Fuzzy Logic and Intelligent Systems, vol. 5, no. 3, September 2005

dio or data formats [3,4].

b) The input mechanism shall be either a touch screen or a
speech recognition unit, or even a visual sensor [3.4].

¢) There shall be sufficient storage space for the application
data [3,4].

2.2 Network Communication

a) Any device that needs data or instruction in real time shall
have the ability to communicate over the network[S].

b) The network shall consist of network devices and sensors
that communicate over a wired or wireless infrastructure
using different transport protocols [5].

¢) The network communication shall be flexible to support
different network configuration [5].

2.3 Communication Middleware

a) The infrastructure shall include communication middleware
that connects the devices to various information, interface,
and application servers {13, 14].

b) The communication middleware shall possess a discovery
capability that can automatically connect the devices to
new domains when the user enters a new context (logical
or physical) [9].

¢) The communication middleware shall possess capabilities
for the devices to receive information relevant to the user's
current context [10].

d) The communication middleware shall support query capa-
bility for the devices to look up information buffered by
the infrastructure [12].

e) The communication middleware shall support publish or
subscribe capability for the devices to receive information
pushed from the infrastructure asynchronously [6].

f) The communication middleware shall support alert capa-
bility for the infrastructure to wake up the devices when
establishing a communication channel [11].

2.4 Seamless Integration

The devices shall appear to users as universal translator al-
lowing them to interact with intelligent devices.

3. Ongoing Pervasive Computing Efforts

3.1 Oxygen

Oxygen [7] is an approach to "invisible computing" being
pursued by MIT. This approach has two primary aims:

a) Understand what turns an otherwise dormant environment
into an empowered one.

b) Enable the user to shift much of the task burden onto the
infrastructure.

Devices in Oxygen supply power for computation and com-
munication, and work in much the same way that batteries
and wall outlets supply power for electrical appliances. Both
mobile and stationary devices are regarded as universal com-
munication and computation appliances. They are also anony-
mous since they do not store configurations that are custom-

180

ized to any particular user[7].

The Oxygen project focuses on eight areas. The first is
concerned with mobile service that relies on software to auto-
matically detect and re-configure itself; the second and third
technologies focus on embedded computing devices used to
distribute computing nodes throughout the model, and network
technology needed to allow embedded computing devices to
interact and provide run time requirements. The final five
technologies are all aimed at improving the user experience[7].

3.2 Aura

Aura[8] is described by Carnegie Mellon University as an
architectural framework for user mobility in ubiquitous com-
puting environments. The central architecture of Aura is de-
signed to satisfy two competing goals for supporting mobile
computational needs. The first is to maximize the use of avail-
able resources; i.e., to effectively exploit the increasingly per-
vasive computing and communication resources in modern
environments. The second is to minimize the user distraction
and attention[8]. Aura consists of the following components:
Coda is a distributed file system. The Odyssey layer is for re-
source adaptation. Spectra is a remote execution service.
Azure is a task layer that defines the interaction between lay-
ers that make tasks adaptable to a certain environment.
AuraRT is a middleware that provides runtime support to the
application. Prism is a task manager that interprets the human
intention in any given situation[8].

Inherent to these pervasive computing efforts like Oxygen,
Aura, etc. is a belief that traditional software will be treated
as an application delivery mechanism: i.e., new software will
support a more dynamic interface. However, this assumption
turns out to be a major hurdle during application development,
because these technologies work complementarily to the needs
of any designer who may be developing an application to be
used in conjunction with Oxygen. Overcoming this obstacle
requires major changes in the way each application is de-
signed and makes it difficult to use existing applications with-
out requiring design changes.

4. System Architecture with Concord
Based on the above survey and requirement, proposed is a

system model with Concord as middleware. The architecture
of the proposed system is shown in Fig. 1.

Ubiquitous Computing Applications / Services j

I
—

|

Concord consist of a Lookup Server and a Database

Interface to the Intemet
Underlying network which will connect the world (Wired or Wireless)

|
i Concord
|

Fig. 1. System architecture of proposed system with Concord
as middleware

Concord: A Proactive Lightweight Middleware to Enable Seamless Connectivity in a Pervasive Environment

4.1 Interface to the Internet

This layer provides communication capability over the
network. This layer consists of communication, media tech-
nologies, and transport protocols.

4.2 Concord

Concord provides a distributed runtime’
Concord allows devices to interoperate and form spontaneous
communities. To accomplish this, Concord supports discovery
as well as storage capability. In this layer, devices export

environment.

services that applications can use. Additionally, Concord sup-
ports publish and subscribe capability for devices to request
information from infrastructure synchronously or receive in-
formation pushed from infrastructure asynchronously.

4.3 Ubiquitous Computing Applications / Services

The topmost layer of ubiquitous computing is an environ-
ment in which computing disappears into the background,
weaving itself into everyday life. This layer enables a rich
runtime environment. It has the ability to sense and interact
with the computing environment: A characteristic defined as
being "physical and real”. Devices behave proactively depend-
ing on their surroundings.

5. Concord Architecture

This section gives a detailed description of Concord by
covering the design aspects and providing an understanding of
the different component modules and the reasons for their use.

5.1 Assumptions

As shown in Fig. 1, Concord resides between the applica-
tion and the underlying Internet network structure with the
following assumptions:

a) The network infrastructure is available for communication.

b) The interface to the network consists of devices and sen-
sors along with transport protocols.

¢) The transport technology may be Palm Pilots and Bluetooth
or 802.11 type systems that provide short-range moderate
bandwidth connections.

d) Widely deployed and easily accessible wireless Local Area

Networks (LAN) and Wide Area Networks (WAN) will be

available. -

5.2 Model Description

Fig. 2 gives an overview of Concord, which consists func-
tionally of two layers. Layer 1 consists of tasks. Tasks ex-
ecute programs that form foundation to provide a transparent,
ubiquitous computing and networking environment to an upper
layer. The basic operation of the tasks is to create, start, and
terminate a service. The tasks, like processes in traditional op-
erating systems, are independent of each other, and local tasks
interact by exchanging data. Layer 2 consists of Lookup
Server and Database. Lookup Server maintains dynamic in-
formation about the available tasks, and Database represents

persistent storage.

[t]
‘ Layer: Tasks
} 1 : Client/ Server Agentwhich execute code passed to them
—
1
: La;erll Lookup Server Database
! |
|

Fig. 2. Overview of Concord

5.3 Detailed Model Description

Fig. 3 details a layered architecture of Concord. The left
side of the picture shows all the components of Lookup
Server and the right side of the picture shows all the compo-
nents of Database. Both Lookup Server and Database use
components such as query and interface matching in different
contexts, and the two do overlap.

La{er Client/Server Agent
—RRIIR 7

Access toservice \9;?3 Y /

Layer LSS5 , 7
% S,

2 Clientuse [Discovery }g:%f 1‘\94%/ f /
N . a0 R Pl

ofservice | mechanism f;fvt*??{ﬂ% A

? { Overlapping
Fig. 3. Detailed architecture of Concord

As shown in Fig. 3, Layer 1 consists of tasks that can be
any of the following:

a) Client Agent: Client Agent is a software component that
runs in a device, such as PDAs, laptops, etc. It searches
the network to find the services needed by the applications
running in the device.)

b) Server Agent: Server Agent runs on the devices, such as
printers, plotters, scanners, etc., that provides the service.
Server Agent is a software component that advertises the
services provided by the device.

Layer 2 consists of Lookup Server and Database. Lookup

Server and Database consists of the following components:

a) Discovery mechanism: Discovery mechanism defines how a
client locates service discovery infrastructure.

b) Access to service: This topic addresses how a client, once
it has located a service it needs, negotiates access to the
service.

¢) Client use of service: Once a client has located a service,
and has successfully negotiated access to the service, it
must send instructions in the form of an object ordered se-
quence of fields to the service. A field is defined as a ba-
sic component of the data structure hierarchy. For exam-
ple, when a client requests for print service, it will send
out a location, a type of file, a type of print and a number
of copies to the print service.

d) Query: This is a mechanism by which Database is queried
for the records.

e) Interface matching: Interface matching defines how a tem-

191

International Journal of Fuzzy Logic and Intelligent Systems, vol. 5, no. 3, September 2005

plate or an interface stored in a registry matched with the
template provided by the client.

f) Registry: Registry is where the information about the avail-
able services is maintained. Data is stored as object or-
dered sequences of fields, and a field is defined as a basic
component of the data structure hierarchy.

g) Update: This mechanism pertains to the protocols that
Server Agent uses to update entries in Registry.

h) Cleanup: This module addresses how obsolete or incorrect
information is purged from Registry.

5.4 Comparative Study of Concord vs. Other Systéms

As illustrated in Table 1, the proposed system is centered
on Concord. Concord has the following advantages compared
to other models.

Table 1. Feature comparison of Aura vs. Oxygen vs. System
with Concord

Feature Aura Oxygen Concord
. No, design
No, design ?
changes are | Changes are
iﬁif)degr;?e incorporate Yes,
D PO Oxygen's Applications
oes system Aura's hil hy. F tandard
L hilosonhy. For|Philosophy. Forp use standar
support existing philosophy example use of] interface to
software? exiﬂf ;;195?0 of second and communicate
provide third with Concord.
distributed 160:{2%2%%{3 dfor
real-time object systems
Yes. Concord
Is system No. Developer Nlcs) flg::c\ézlog)er uses standard
conducive to | is forced to follow interface to
new software | follow Aura's Oxyeen's communicate
development philosophy. hil g] s%) h with
p Py applications.
No, Aura
provides No, Oxygen
Light weight |developer with | defines a new ?gesl; Eﬁi‘?aﬁf
database Coda a technology for 'mgnatureg
distributed files|storing of data. ’
system
Proactive
behavior Yes Yes Yes
Scalability Yes Yes Yes
Distributed
application Yes Yes Yes
support
Accessibility Yes Yes Yes
Invisibility Yes Yes Yes
Fault tolerance Yes Yes Yes

6. Case Study

What would it be like to live in a world with pervasive
computing? To help convey the "look and feel" of such a
world, real life scenarios are analyzed in this section. This
section discusses the challenges in computer systems research
posed by pervasive computing. We will now discuss two ex-

192

emplary scenarios where Concord provides proactive behavior.
These scenarios are chosen because they are typical in our
day to day life and they embody many key ideas in pervasive
computing.

6.1 Scenario 1

Mary is on a road in her car, driving through the city, she
gets a call asking her to email an important time critical
document. Client Agent running on Mary's cellular phone un-
derstands this and infers that Mary would like to use her
wireless connection to e-mail this document. Unfortunately,
she does not know where in the city she can access the
Internet. Client Agent running in her system observes this. It
consults a Location Server in the city and finds that wireless
access is available at a nearby university library. A dialog box
pops up on Mary's screen suggesting that she can go to the
nearby university library, which is only three minutes away.
Mary accepts the advice and drives to the library with the
help of a map provided by Client Agent.

6.2 Scenario 2

Joe is in his office, frantically preparing for a meeting at
which he will give a presentation in 15 minutes. It is time to
leave, but he is not quite ready. He grabs his wireless hand-
held computer and walks out of the door. Client Agent infers
where he is going from his calendar. It downloads the pre-
sentation and the demonstration software to the projection
computer and warms up the projector. Joe has to provide a
hard copy of his presentation for which the list of printers
present in the locality is popped up; Joe chooses the nearest
printer. He reaches the conference room and starts his pre-
sentation without any delay.

6.3 Missing Capabilities

These scenarios embody many key ideas in pervasive
computing. Scenario 1 shows the importance of proactive
behavior. Mary is able to complete her e-mail transmission
only because Client Agent has capability to estimate how crit-
ical the whole process was and directed Mary to the right
place where she could access the Internet. The scenario also
shows the importance of combining knowledge from different
layers of the system. Wireless connectivity is a low-level sys-
tem phenomenon. Knowledge of university library is an appli-
cation or user-level concept. Client Agent is able to obtain
knowledge of wireless conditions at other places, and distance
to these places because the computing environment provides
these services. Scenario 2 illustrates, the ability to move the
execution state effortlessly across diverse platforms: from a
desktop to a handheld machine and from the handheld to the
projection computer. Self-tuning, or automatically adjusting be-
havior to fit circumstances, is shown by the ability to find
printer. Scenario 2 embodies many instances of proactive be-
havior, by inferring that Joe is headed for the room across
campus, warming up the projector, transferring the presentation
and demonstration, anticipating that the he may request print
service by combining this knowledge with the inferred past
experience.

Concord: A Proactive Lightweight Middleware to Enable Seamless Connectivity in a Pervasive Environment

The biggest surprise in these scenarios is how simple and
basic all the component technologies are. The hardware tech-
nologies (laptops, handhelds, wireless communication, soft-
ware-controlled appliances, etc.) are all here today. The com-
ponent software technologies have demonstrated location track-
ing, online database access, and so on. Then why do these
scenarios seem like science fiction rather than reality? The an-
swer lies in the fact that the whole system is much greater
than the sum of its parts. In other words, the real research is
in the seamless integration of component technologies into a
single system. The difficult problems lie in architecture, com-
ponent synthesis, and system-level engineering.

6.4 Solution

The following set of block diagrams and message sequence
diagrams gives a better picture of how Concord enables seam-
less integration of various entities. An explanation of how
each component in Concord provides a specific capability to
achieve the final goal is explained later in the section.

6.4.1 Solution for Scenario 1

As shown in Fig. 4, Map Server connects to City
Information Server asynchronously. Laptop computer repre-
sents a mobile user who will be in and out of the network as
he moves around. City Information Server hosts Concord.

=T

) Layer | Tasks

: 1 : Client/ Server Agent which execute code passed to them
1

- l

| Layer!

el Lookup Server Database

[{

| |

Fig. 4. High level block diagram of Scenario 1

City Information Server maintains a list that specifies all
available services on the network. Map Server maintains in-
formation of all the places and their specialty. Map Server
provides driving directions to any user who requests directions
from one place to another. Client Agent on the laptop requests
City Information Server for a list of spots where the public
internet is available. City Information Server returns an inter-
face to Client Agent. This interface is used by Client Agent to
communicate with Map Server. Calculating the latest position
using the GPS, Client Agent fills in the interface with its po-
sition and its request for list of spots that offer access to the
Internet. Map Server responds to Client Agent by providing a
list of places where there is Internet availability. The user
chooses the spot which he/she desires. Client Agent sends a
request for directions to the spot selected by the user. Map
Server provides directions to the spot.

As shown in Fig. 5, when Map Server wants to publish its
capabilities, it first discovers one or many Lookup Server
from the local or remote networks. Map Server then uploads
its service components to City Information Server. The service
proxy is stored in Registry. Client Agent can use this proxy to
contact the original service and invoke methods on the
service. Clients find a service by simple Interface matching.

Mobila L City Information Server (Concord) 7 Map
device Server

{Chent Lookup Server Database (Server
Agent)

Client | [Access Query | | Interace

Discovery matching
wseof || b rgemery Regrstry | | Undate | | Cleanug
semce | | servico

Regsitefwith City Information|Server

Agent}

equest fof interface

Uplpad servicp ¢ to City Server

Update reg|stry with ifterface

Wite to regigry

Send emgil
e o

Request for Map Server

Query for Map $erver

equest 19 locate a Map Serve
P

Request Ditabase for all stored interfaced corresponding to Map Server

Match stored interface with request

Return the Intprface thai was requgsted by Client Agent

Interface toaccess Map Server

interface to agcess Map Seiver

Clipnt Agent fequests for the hist of plgces wherg the publiginternet i1s|available

by proiding detalls Ike current jocation ard bandwadth reqmreteni >

Map Server returns list|of places.with appraximate
Iiving time t{réach these places

Uspr selects
alpcation Client Agept sends ajrequest tolMap Server for

driving diref-fion [o Thg user selefted déstifation

Map Sérver retnrqs the drvipg directiops

Fig. 5. Inner working of different entities in Scenario 1

In Fig. 5, a user requests to send an email, Client Agent
checks for the connectivity. When Client Agent finds that
there is no connectivity. Client Agent requests City
Information Server for the map service. City Information
Server queries Database and provides an interface to Client
Agent. Client Agent communicates with Map Server using the
interface provided by City Information Server. Client Agent
requests for the list of places where the public Internet is
available by providing details like current location, bandwidth
requirement, etc. Map Server returns list of places, with ap-
proximate driving time to reach these places. The user selects
the location which suits him/her best. Upon selection, Client
Agent sends a request to Map Server for driving direction to
the user selected destination. Map Server returns the driving
directions.

6.4.2 Solution for Scenario 2

This section explains the various aspects of the system used
for the Scenatio 2.

Laptop computer
(Client Agent)
.@@ = = et

Project;
Central Server ety maphme

(service)

(Lookup Server B
+ Database) flity Se
Utility Server =2
{Concord) (Server Agent) ooy

Desktop PC

Fig. 6. High level block diagram of Scenario 2

As shown in Fig. 6, Utility Server connects to Central
Server asynchronously. The laptop computer represents a mo-

193

International Journal of Fuzzy Logic and Intelligent Systems, vol. 5, no. 3, September 2005

bile user who will be in and out of the network as he moves
around. Desktop computer represent a stationary user. Central
Server hosts Concord. Utility Server provides services for pro-
jector, printer, scanner, etc.

Central Server maintains a list that specifies all available
services on the network. Utility Server maintains information
of all the devices and their location. Utility Server provides
service to any user who requests service for printing, modem,
projector, etc. When a mobile user schedules a presentation,
Client Agent on the laptop requests an interface for the pro-
jector; Central Server returns an interface to Client Agent.
Using this interface, Client Agent communicates with Utility
Server, and Client Agent fills in the interface with its room
number, requests for warming up the projector, and also re-
quests for a list of all available printers near the conference
room. Utility Server responds to Client Agent's request by
providing a list of all the printers, and providing an interface
which can control the projector. Client Agent sends a request
to start up the projector and print the documents to any print-
er user desires.

device
(Client Lookup Server Database (Server
Agent)

A
gent) e Query | [Fetace
o Discovery matching || g ogistey | | Update | | Cleanup
machanism
sanice

epsiter with Utility SerJar

4}?&3 Mobile [Central Server (Concord) SUnhly
erver
o

el

equest fof Interface

Uptoad gervice ¢ tp Utility Sepver

pdate reg|stry with ritefface

Wijte to regigtry

Calenday
VO
Request for Utilily Server

Query for tility$erver

Request tojlocate a Ltiity Serves
ey

Request Dgtabase fot al ling to Utifity:

Match stored interface with request

Return the Interface thaj was requested by Client Agen

Interface tolaccess UghtyServer|

Inteface to ac jess Utlity Sefver
—1

conferenc fcinity

Utility Server|starts the projector ad returns a list of

dlient Agent requests for fvam up of the proje% or and a l{st of printgrs in the
P F00M's

Uspr selecy
agantef

Client Aget 61 10

he Success orfaiure of i

6 TeqUest,

Fig. 7. Inner working of different entities in Scenario 2

As shown in Fig. 7, when Utility Server wants to provide
any kind of service, it first discovers Lookup Server on the
local or remote networks. Server Agent uploads a service
proxy to Central Server. The service proxy is stored in
Database. Client Agent uses this service proxy to contact
Utility Server. Client Agent uses Interface matching to find a
service. In Fig. 7, Client Agent is triggeted when it finds that
a presentation is scheduled in 15 minutes. Client Agent re-
quests Central Server for projector and print service. Central
Server queries Database and provides an interface to Client
Agent. Using this interface, Client Agent communicates with
Utility Server. Client Agent requests for warm up of the pro-
jector and a list of printers in the conference room's vicinity.

194

Utility Server starts the projector and returns a list of printers,
which satisfies the user requirements. The user selects a print-
er which suits him/her best. Upon selection, Client Agent
sends a request to Utility Server to print the document on the
selected printer. Utility Server returns a code which indicates
the success or failure of the request.

7. Conclusion

The essence of any pervasive system is proactive behavior.
For a system to enable proactive behavior, the system shall be
dynamic at load-time, shall support discovery and compose
services that are available in physical environment. Computing
devices shall store software and user data in a local database.
Computing devices shall be able to communicate with the net-
work middleware, and the communication mechanism shall al-
low user to roam seamlessly between computing contexts.
Finally, computing devices shall support a wireless link.

Various models such as Aura (Carnegie Mellon), Oxygen
(MIT), Gaia, and PICO have been developed to provide sys-
tem wide changes to enable proactive behavior. A major
drawback of these approaches is that they do not answer the
need to make use of extant applications without modifying the
applications. The proposed middleware architecture, Concord,
provides a platform for the integration of various entities to
provide a seamless connectivity and enable proactive behavior.

Concord is a model bases on Lookup Server and Database.
The rewards of this simple model are as follows: Concord
standardizes the interfaces for all services and all platforms;
Concord uses the existing computing infrastructure. New serv-
ices can be added dynamically without any need for re-
configuration, and Concord consists of Database, which en-
ables it to maintain and publish the active set of available
resources. The capabilities of Concord are demonstrated using
real life scenarios, appropriate block diagrams, and sequence
diagrams. The details of the inner-working of the design are
included in order to provide a better understanding of how
Concord enables proactive behavior in dormant environment.

References

[1] M.Weiser, "Some Computer Science Issues in Ubiquitous
Computing," Communications of the ACM, pp. 75-84,
1993.

[2) C. Huang, B. C. Ling and S. Ponnekanti, "Pervasive
Computing: what is it good for?,” Proceedings of the
ACM international workshop on Data engineering for
wireless and mobile access, pp. 84-91, 1999.

(3] M.Satyanarayanan, "Pervasive Computing: Vision and

Challenges," IEEE Personal Communications, pp-10-17,
2001.
[4] G. Banavar, J. Beck, E. Gluzberg, J. Munson, J.

Sussman and D. Zukowski, "Challenges: An Application
Model for Pervasive Computing," Proceedings of the 6th
annual international conference on Mobile computing and

Concord: A Proactive Lightweight Middleware to Enable Seamiess Connectivity in a Pervasive Environment

networking, pp. 266-274, 2000.

[5] J. Flinn, D. Narayanan, and M. Satyanarayanan,
"Self-Tuned Remote Execution for Pervasive Computing,"
Proceedings of the 8th Workshop on Hot Topics in
Operating Systems, pp. 61-66, 2001.

[6] G. G. Richard I, "Service Advertisement and
Discovery-Enabling Universal Device Cooperation," IEEE
Internet Computing, pp. 18-26, 2000.

[7] http://Oxygen.lcs.mit.edu/Overview.html#Challenges.

(8] D.Garlan, S.Dan, S.Asim, and S. Peter, "Project Aura:
Towards Distraction-Free Pervasive Computing," IEEE
Pervasive Computing, special Integrated
Pervasive Computing Environments, vol. 1, no. 2, pp.
22-31, 2002.

[9] K.Takasugi, M.Nakamura, S.Tanaka, M.Kubota, "Seamless
Service Platform for Following a User's Movement in a
Dynamic Network Environment," Proceedings of the First

issue on

IEEE International Conference on Pervasive Computing
and Communication, pp. 71-78, 2003.

[10] C.Borceal, C.Intanagonwiwatl, A.Saxena, and L.Iftode,
"Self-Routing in Pervasive Computing Environments us-
ing Smart Messages," Proceedings of the First IEEE
International Conference on Pervasive Computing and
Communications, pp. 87-96, 2003.

[11] K.R"omer, T.Schoch, F.Mattem, T.D"ubendorfer, "Smart
Identification Frameworks for Ubiquitous Computing
Applications,” Proceedings of the First IEEE
International Conference on Pervasive Computing and
Communications, 2003, pp. 253-262.

[12] C. Bisdikian, J. Christensen, J. Davis, M. R. Ebling, G.
Hunt, W. Jerome, H. Lei, S. Maes and D. Sow,
"Enabling Location-Based Applications,” Proceedings of
the first international workshop on Mobile commerce,
pp. 38-42, 2001.

[13] S. Cheng, D. Garlan, B. Schmerl, J. Sousa, B.
Spitznagel, P. Steenkiste, and N. Hu, "Software
Architecture-based Adaptation for Pervasive Systems,”
International Conference on Architecture of Computing
Systems: Trends in Network and Pervasive Computing,
pp. 67-82, 2002.

[14] Thayer and P. Steenkiste, "An Architecture for the
Integration of Physical and Informational Spaces,"
International Conference on Architecture of Computing
Systems: Trends in Network and Pervasive Computing,
pp. 82-90, 2002.

[15] GJudd and P.Steenkiste, "Providing Contextual
Information to Pervasive Computing Applications," IEEE
International Conference on Pervasive Computing, Vol
7Issue 2, pp. 82-90, 2003.

[16] M.Roman,C.Hess, R.Cerqueira, A Ranganathan,
R.H.Campbell, K.Nahrstedt, "A middleware infrastructure
for active spaces," IEEE Pervasive Computing, Vol 1 ,
Issue 4, pp. 74-83, 2002.

[17] M.Kumar, B.A.Shirazi, S.K.Das, B.Y.Sung, D.Levine,
M.Singhal, "PICO: a middleware framework for perva-
sive computing," IEEE Pervasive Computing, Vol 2,
Issue 3, pp. 72-79, 2003.

Sam Hsu

Current : Florida Atlantic University,
Professor

Research Interests : Web Technologies,
Web-based Distance Learning, Computer
Internetworking, Practical & Educational
Projects

E-mail : sam@cse.fau.edu

Mahesh Mutha
current : Motorola Inc., Plantation, Florida, USA
Email : emm053@motorola.com

A. S. Pandya

Current : Florida Atlantic University,
Professor

Research Interests : Neural Networks, VLSI,
Artificial Intelligence

E-mail : abhi@cse.fau.edu

YoungUhg Lho (Corresponding author)
He received the B.S, M.S. and PhD
degrees in Dept. of Computer Science from
Busan National University, Busan, Korea, in
1985, 1989, and 1998, respectively. From
1989~1996, he was with the Electronics
and Telecommunications Research
Institute(ETRI), Daejeon, Korea. Since 1996,
he has been with the Dept. of Computer Education, Siila
University, where he is now Associate Professor. His research
interests include ubiquitous computing, embedded system,
multimedia system, parallel and distributed system, intelligent
system and computer education.

Phone : 051-309-5570
E-mail : yulho@silla.ac kr

195

