On the convergence in the sense of α -level on a fuzzy normed linear space

Gil Seob Rhie

Department of Mathematics, Hannam University, Daejeon 306-791, Korea

Abstract

In this paper, we introduce the notions of the convergence in the sense of α -level and the fuzzy completeness on a fuzzy normed linear space. And we investigate related properties

Key Words: fuzzy norm, convergence in the sense of α -level, Cauchy sequence in the sense of α -level, fuzzy completeness

1. Introduction

Katsaras and Liu [3] introduced the notions of fuzzy vector spaces and fuzzy topological vector spaces. These ideas were modified by Katsaras [1] and in [2] Katsaras defined the fuzzy norm on a vector space. In [4] Krishna and Sarma discussed the generation of a fuzzy vector topology from an ordinary vector topology on a vector space. Also Krishna and Sarma [5] observed the convergence of sequence of fuzzy points. Rhie et. al[8] introduced the notion of fuzzy α -Cauchy sequence of fuzzy points and fuzzy completeness.

Since the concept of the completeness is essential to discribe the aspects of normed linear space relative to the closedness of a space, there may be rich applications for fuzzyfying Banach spaces if the concept of a new type of the fuzzy completeness is introduced in a fuzzy normed linear space. In this paper, we introduce the notions of the convergence of sequence in the sense of α -level and Cauchy sequence in the sense of α -level on a fuzzy normed space and fuzzy completeness, as a generalization of those in ordinary normed linear spaces. And we investigate related properties.

2. Preliminaries.

Throughout this paper, X is a vector space over the field $K(R \ or C)$.

Fuzzy subsets of X are denoted by Greek letters in general. χ_A denotes the characteristic function of the set A.

Definition 2.1[3]. For two fuzzy subsets μ_1 and μ_2 of

접수일자: 2005년 5월 10일 완료일자: 2005년 9월 14일

The author is grateful to the referees for their comments and helpful suggestions.

X, the fuzzy subset
$$\mu_1 + \mu_2$$
 is defined by $(\mu_1 + \mu_2)(x) = \sup_{x_1 + x_2 = x} \min \mu_1(x_1), \mu_2(x_2)$

And for a scalar t of K and a fuzzy subset μ of X, the fuzzy subset $t\mu$ is defined by

$$(t\mu)(x) = \begin{cases} \mu(\frac{x}{t}) & \text{if} & t \neq 0 \\ 0 & \text{if} & t = 0 \text{ and } x \neq 0 \\ sup_{y \in X} \mu(y) & \text{if} & t = 0 \text{ and } x = 0 \end{cases}$$

Definition 2.2 [1]. $\mu \in I^X$ is said to be

- i) convex if $t\mu + (1-t)\mu \le \mu$ for each $t \in [0,1]$,
- ii) balanced if $t\mu \le \mu$ for each $t \in K$ with $|t| \le 1$,
- iii) absorbing is $\sup_{t>0} t\mu(x) = 1$ for all $x \in X$.

Definition 2.3[1]. Let (X, τ) be a topological space and $\omega(\tau) = \{f(X, \tau) \rightarrow [0, 1] \mid f \text{ is lower semicontinuous }\}$. Then $\omega(\tau)$ is a fuzzy topology on X. This topology is called the fuzzy topology generated by τ on X. The fuzzy usual topology on K means the fuzzy topology generated by the usual topology of K.

Definition 2.4 [1]. A fuzzy linear topology on a vector space X over K is a fuzzy topology on X such that the two mappings

$$+: X \times X \rightarrow X, (x, y) \rightarrow x + y$$

 $\cdot: K \times X \rightarrow X, (t, x) \rightarrow tx$

are continuous when K has the fuzzy usual topology. A linear space with a fuzzy linear topology is called a fuzzy topological linear space or a fuzzy topological vector space.

Definition 2.5[1]. Let now X be a fuzzy topological space and $x \in X$. A fuzzy set μ in X is called a neighborhood of x if there exists an open fuzzy set ρ with $\rho \le \mu$ and $\rho(x) = \mu(x) > 0$. Warren has proved in [9] that a fuzzy set μ in X is open iff μ is a neighborhood of x for each $x \in X$ with $\mu(x) > 0$.

Theorem 2.6[1]. Let μ be a neighborhood of $z_0=x_0+y_0$ in a fuzzy topological vector space X. Then, for each real number θ with $0 < \theta < \mu(z_0)$ there exist open neighborhoods μ_1 , μ_2 of the points x_0 , y_0 respectively, such that $\mu_1+\mu_2 \leq \mu$ and $\min \mu_1(x_0), \mu_2(y_0) > \theta$. In case $x_0=y_0=0$, there exists an open neighborhood μ_3 of zero with $\mu_3(0) > \theta$, $\mu_3+\mu_3 \leq \mu$.

Definition 2.7[1]. Let x be a point in a fuzzy topological space X. A family F of neighborhoods of x is called a base for the system of all neighborhoods of x if for each neighborhood μ of x and each $0 < \theta < \mu(x)$ there exists $\mu_1 \in F$ with $\mu_1 \le \mu$ and $\mu_1(x) > \theta$.

Definition 2.8[2]. A fuzzy seminorm on X is a fuzzy set ρ in X which is convex,balanced and absorbing. If in addition $inf_{t>0}t\rho(x)=0$ for every nonzero x, then ρ is called a fuzzy norm.

Theorem 2.9[2]. If ρ is a fuzzy seminorm on X, then the family $B_{\rho} = \{\theta \wedge t\rho \mid 0 < \theta \leq 1, t > 0\}$ is a base for a fuzzy linear topology τ_{ρ} , where $\theta \wedge t\rho$ is the function $X \rightarrow [0,1]$ such that $\theta \wedge t\rho(x) = \min\{\theta, \rho(\frac{x}{t})\}$

Definition 2.10[2]. Let ρ be a seminorm on a linear space. The fuzzy topology τ_{ρ} in Theorem2.9 is called the fuzzy topology induced by the fuzzy seminorm ρ . And a linear space equipped with a fuzzy seminorm(resp.fuzzy norm) is called a fuzzy seminormed(resp.fuzzy normed) linear space.

3. Fuzzy convergence and fuzzy completeness

In this section, we introduce the notions of the convergence of sequence in the sense of α -level and fuzzy completeness on a fuzzy normed linear space. And we investigate related properties.

Definition 3.1. Let (X, ρ) be a fuzzy normed linear space and $\alpha \in (0,1)$. A sequence $\{x_n\} \subset X$ is said to converge to a point $x \in X$ in the sense of α -level if and only if for every neighborhood N of zero with $N(0) > \alpha$, there exists a positive integer M such that $n \ge M$ implies $N(x_n - x) > \alpha$ (denoted by $x_n \xrightarrow{\alpha} x$) and x is said to be a limit of $\{x_n\}$ in the sense of α -level.

Theorem 3.2. Let (X, ρ) be a fuzzy normed linear space and $\alpha \in (0, 1)$. Then

(a) If
$$x_n \xrightarrow{\alpha} x$$
 and $y_n \xrightarrow{\alpha} y$, then

$$x_n + y_n \stackrel{\alpha}{\longrightarrow} x + y$$
.
(b) If $t \in K$ and $x_n \stackrel{\alpha}{\longrightarrow} x$, then $tx_n \stackrel{\alpha}{\longrightarrow} tx$.

Proof. (a) Let N be a neighborhood of zero with $N(0) > \alpha$. Then there exists an open neighborhood N_1 such that $N_1 + N_1 \le N$ and $N(0) > \alpha$ by Theorem 2.6. Since $x_n \xrightarrow{\alpha} x$ and $y_n \xrightarrow{\alpha} y$, there exist two positive integers M_1, M_2 such that

$$n \ge M_1$$
, implies $N_1(x_n - x) \ge \alpha$ and $n \ge M_2$ implies $N_1(y_n - y) \ge \alpha$.
Let $M = \max M_1$, M_2 and $n \ge M$. Then $N((x_n + y_n) - (x + y))$

$$\ge (N_1 + N_1)((x_n + y_n) - (x + y))$$

$$= (N_1 + N_1)((x_n - x) + (y_n - y))$$

$$\ge \min N_1(x_n - x), N_1(y_n - y) \ge \alpha$$

Therefore $\{x_n + y_n\}$ converges to x + y in the sense of α -level.

(b) If t=0, then it is clear. Let $t\neq 0$. Since for every neighborhood of zero N with $N(0) > \alpha$, $\frac{1}{t} N$ is also a neighborhood of zero with $\frac{1}{t} N(0) = N(0) > \alpha$, and $\{x_n\}$ converges to x in the sense of α -level, there exists a positive integer M such that $n \ge M$ implies $N(tx_n - tx) = \frac{1}{t} N(x_n - x) > \alpha$. Therefore $\{tx_n\}$ converges to tx in the sense of α -level. This completes the proof.

Now, we will prove that the limit in the sense of α -level is unique. For the proof, we begin with following two lemmas.

Lemma 3.3. Let (X, ρ) be a fuzzy normed linear space, $x \in X$ and $\alpha \in (0, 1)$. If for every t > 0, $t\rho(x) > \alpha$, then x is the zero vector of the space X.

Proof. Suppose that x is not zero vector. Since for every t>0, $t\rho(x)>\alpha$, $inf_{t>0}t\rho(x)\geq\alpha>0$. This contradicts to the fact that ρ is a fuzzy norm on X. Hence x is the zero vector of X.

Lemma 3.4. Let (X, ρ) be a fuzzy normed linear space and $x \in X$. If for each neighborhood of zero N with $N(0) > \alpha$, $N(x) > \alpha$, then x is the zero vector of X.

Proof. Fix a $\theta > a$. Since for every t > 0, $\theta \wedge t\rho$ is a neighborhood of zero and $\theta \wedge t\rho(0) = \theta \wedge \rho(0) = \theta \wedge 1 > a$, $\theta \wedge t\rho(x) > a$ for all t > 0. This implies that for every t > 0, $t\rho(x) > a$. By the above lemma, x is the zero vector of X.

Theorem 3.5. The limit in the sense of α -level of a sequence $\{x_n\}$ is unique.

.Proof. Suppose that $\{x_n\}$ converges to x and x' in the sense of α -level. If N is a neighborhood of zero with $N(0) > \alpha$, then there exist two positive integers M_1 and M_2 such that

$$n \ge M_1$$
 implies $N(x_n - x) > \alpha$ and $n \ge M_2$ implies $N(x_n - x') > \alpha$.

Since N is a neighborhood of zero and $N(0) > \alpha$, there exists a neighborhood of zero N_1 such that $N_1(0) > \alpha$, $N_1 + N_1 \le N$ by Theorem 2.6. Now, we have

$$\begin{split} N(x-x') &\geq (N_1+N_1) \, (x-x') \\ &= (N_1+N_1) \, ((x-x_n)+(x_n-x')) \\ &\geq \min\{N_1 \, (x_n-x), N_1 \, (x_n-x')\} \, \rangle \, \alpha \quad \text{ for } \quad \alpha \\ n &\geq \max \, M_1, \, M_2. \end{split}$$

By the above lemma, we get x-x'=0 equivalently x=x'. This completes the proof.

Definition 3.6. Let (X, ρ) be a fuzzy normed linear space and $\alpha \in (0,1)$. A sequence $\{x_n\}$ is said to be a Cauchy sequence in the sense of α -level if and only if for every neighborhood of zero N with $N(0) > \alpha$, there exists a positive integer M such that $n, m \ge M$ implies $N(x_n - x_m) > \alpha$.

Theorem 3.7. Let (X, ρ) be a fuzzy normed linear space and $\alpha \in (0,1)$. Then every convergent sequence in the sense of α -level in (X, ρ) is a Cauchy sequence in the sense of α -level.

Proof. Let $a \in (0,1)$ and $\{x_n\}$ converge to a point $x \in X$ in the sense of α -level. Then for every neighborhood of zero N with $N(0) > \alpha$, there exists a positive integer M such that $n \ge M$ implies $N(x_n - x) > \alpha$. Let a neighborhood of zero N be given and $N(0) > \alpha$. Then there exists a neighborhood of zero N_1 such that $N_1 + N_1 \le N$ and $N_1(0) > \alpha$ by Theorem 2.6. Since N_1 is a neighborhood of zero and $N_1(0) > \alpha$, there exists a positive integer M_1 such that

$$n \ge M_1$$
 implies $N_1(x_n - x) > \alpha$.

Now, we have

$$\begin{split} N(x_{n} - x_{m}) &\geq (N_{1} + N_{1}) (x_{n} - x_{m}) \\ &= (N_{1} + N_{1}) ((x_{n} - x) + (x - x_{m})) \\ &\geq \min\{N_{1} (x_{n} - x), N_{1} (x - x_{m})\} > \alpha \quad \text{for all} \end{split}$$

 $n, m \ge M_1$.

Therefore $\{x_n\}$ is a Cauchy sequence in th sense of α -level. This completes the proof.

Now, we consider some relations between the fuzzy completeness and ordinary completeness on a linear space.

Definition 3.8. A fuzzy normed linear space (X, ρ) is said to be complete in the sense of α -level if and only if every Cauchy sequence in the sense of α -level $\{x_n\}$ converges to a point $x \in X$.

 (X, ρ) is said to be fuzzy complete if it is complete in the sense of α -level for all $\alpha \in (0, 1)$.

Lemma 3.9. Let $(X, \| \cdot \|)$ be a normed linear space and B is the closed unit ball of X. Then every Cauchy sequence in the sense of α -level on the fuzzy normed linear space (X, χ_B) is a Cauchy sequence with respect to the ordinary norm.

Proof. Let $\varepsilon > 0$ be given. Since $\theta \wedge \frac{\varepsilon}{2} \chi_B(0) > \alpha$ if $\theta > \alpha$, $\theta \wedge \frac{\varepsilon}{2} \chi_B$ is a neighborhood of zero with $\theta \wedge \frac{\varepsilon}{2} \chi_B(0) > \alpha$. Hence there exists a positive integer M such that $n, m \ge M$ implies

$$\begin{split} &\theta \wedge \frac{\varepsilon}{2} \, \chi_B(x_n - x_m) \rangle \alpha \\ &\Rightarrow \frac{\varepsilon}{2} \, \chi_B(x_n - x_m) \rangle \alpha \\ &\Rightarrow \chi_B\left(\frac{2}{\varepsilon} (x_n - x_m)\right) \rangle \alpha \\ &\Rightarrow \chi_B\left(\frac{2}{\varepsilon} (x_n - x_m)\right) = 1 \\ &\Rightarrow \| \, x_n - x_m \, \| \leq \frac{\varepsilon}{2} \, \langle \, \varepsilon . \, \text{Therefore} \quad \{ \, x_n \, \} \text{ is a} \end{split}$$

Cauchy sequence in $(X, \| \cdot \|)$.

Theorem 3.10. Let $(X, \| \cdot \|)$ be a Banach space. Then the fuzzy normed linear space (X, χ_B) is fuzzy complete where B is the closed unit ball of X

Proof. Fix $\alpha \in (0,1)$ and let $\{x_n\}$ be a Cauchy sequence in the sense of α -level in (X,χ_B) . Then it is a Cauchy sequence with respect to the ordinary norm $\|\cdot\|$ by the above lemma. Since $(X,\|\cdot\|)$ is complete, there exists an $x \in X$ such that $\|x_n - x\| \to 0$. Now, we show that $\{x_n\}$ converges to this x in the

Now, we show that $\{x_n\}$ converges to this x in the sense of α -level in (X, χ_B) . Let N be a neighborhood of zero with $N(0) > \alpha$. Then there exist $\alpha < \theta \le 1$, t > 0 such that $\theta \wedge t\chi_B \le N$ because that $\{\theta \wedge t\chi_B : t > 0, 0 < \theta \le 1\}$ is a base at zero. For this t > 0, there exists a positive integer M such that

$$n \ge M$$
 implies $||x_n - x|| < t$
 $\Rightarrow n \ge M$ implies $\theta \land t\chi_B(x_n - x) \land \alpha$
 $\Rightarrow n \ge M$ implies $N(x_n - x) \land \alpha$.

That is $\{x_n\}$ converges to x in the sense of α -level, therefore (X, χ_B) is complete in the sense of α -level. Since α is arbitrary, (X, χ_B) is fuzzy complete. This completes the proof.

Corollary 3.11. The field K(R or C) with the fuzzy top-

ology generated by the usual topology on K is a complete fuzzy normed linear space.

Definition 3.12 [3]. Two fuzzy seminorms ρ_1 , ρ_2 on X are said to be equivalent if $\tau_{\rho_1} = \tau_{\rho_2}$.

Proposition 3.13[8]. Let $(X, \| \cdot \|)$ be a normed linear space. If ρ is a lower semicontinuous fuzzy norm on X, and have the bounded support : $\{x \in X \mid \rho(x) > 0\}$ is bounded, then ρ is equivalent to the fuzzy norm χ_B where B is the closed unit ball of X.

By Theorem 3.10 and the above proposition, we get the following theorem.

Theorem 3.14. If X is a Banach space and ρ is a lower semicontinuous fuzzy norm having the bounded support, then the fuzzy normed linear space (X, ρ) is fuzzy complete.

References

- [1] A.K. Katsaras, Fuzzy topological vector space I, Fuzzy Sets and Systems 6 (1981) 85-95.
- [2] A.K. Katsaras, Fuzzy topological vector space II, Fuzzy Sets and Systems 12 (1984) 143-154.
- [3] A.K. Katsaras and D.B. Liu, Fuzzy vector spaces and fuzzy topological vector spaces, J. Math. Anal. Appl. 58 (1977) 135–146.
- [4] S.V. Krishna and K.K.M. Sarma, Fuzzy topological vector spaces topological generation and normability, Fuzzy Sets and Systems 41 (1991) 89–99.

- [5] S.V.Krishna and K.K.M. Sarma, Fuzzy continuity of linear maps on vector spaces, Fuzzy Sets and systems 45 (1992) 341–354.
- [6] S.V.Krishna and K.K.M. Sarma, Separation of fuzzy normed linear spaces, Fuzzy Sets and Systems 63 (1994) 207–217.
- [7] R. Larsen, Functional Analysis, Marcel Dekker, New York, 1973.
- [8] G.S. Rhie, B.M Choi and D.S. Kim, On the completeness of fuzzy normed linear spaces, Math. Japonica 45 (1) (1997) 33–37.
- [9] R. H. Warren, Neighborhoods bases and continuity in fuzzy topological spaces, Rocky Mountain J. Math. 8(1978) 459–470.

저 자 소 개

Gil Seob Rhie

He received the Ph.D.degree in mathematics from Korea University in 1988. From 1982 to present, he is a professor in the Department of Mathematics of Hannam University, Daejeon, Korea. His main research nterests include fuzzy analysis and

analysis.

Phone: +82-42-629-7453 Fax: +82-42-629-7894 E-mail: gsrhie@hanmail.net