Effect of Pulsatile Versus Nonpulsatile Blood Flow on Renal Tissue Perfusion in Extracorporeal Circulation

체외순환에서 박동 혈류와 비박동 혈류가 신장의 조직관류에 미치는 영향

  • Kim Hyun Koo (Department of Thoracic and Cardiovascular Surgery, Korea University Medical College) ;
  • Son Ho Sung (Department of Thoracic and Cardiovascular Surgery, Korea University Medical College) ;
  • Fang Yang Hu (Biomedical Science of Brain Korea 21, Korea University) ;
  • Park Sung Young (Korea Atificail Organ Center) ;
  • Kim Kwang Taik (Department of Thoracic and Cardiovascular Surgery, Korea University Medical College) ;
  • Kim Hark Jei (Department of Thoracic and Cardiovascular Surgery, Korea University Medical College) ;
  • Sun Kyung (Department of Thoracic and Cardiovascular Surgery, Korea University Medical College)
  • 김현구 (고려대학교 의과대학 흉부외과학교실) ;
  • 손호성 (고려대학교 의과대학 흉부외과학교실) ;
  • 방영호 (고려대학교 BK21 의과학사업단) ;
  • 박성영 (한국인공장기센터) ;
  • 김광택 (고려대학교 의과대학 흉부외과학교실) ;
  • 김학제 (고려대학교 의과대학 흉부외과학교실) ;
  • 선경 (고려대학교 의과대학 흉부외과학교실)
  • Published : 2005.01.01

Abstract

It has been known that pulsatile flow is physiologic and more favorable to tissue perfusion than nonpulsatile flow. The purpose of this study is to directly compare the effect of pulsatile versus nonpulsatile blood flow to renal tissue perfusion in extracorporeal circulation by using a tissue perfusion measurement system. Material and Method: Total cardiopulmonary bypass circuit was constructed to twelve Yorkshire swines, weighing 20$\~ $30 kg. Animals were randomly assigned to group 1 (n=6, non pulsatile centrifugal pump) or group 2 (n=6, pulsatile T-PLS pump). A probe of the tissue perfusion measurement system $(QFlow^{TM}-500)$ was inserted into the renal pa­renchymal tissue. Extracorporeal circulation was maintained for an hour at a pump flow of 2 L/min after aortic cross-clamping. Tissue perfusion flow of the kidney was measured at baseline (before bypass) and every 10 minutes after bypass. Serologic parameters were collected at baseline and 60 minutes after bypass. Result: Baseline parameters were not different between the groups. Renal tissue perfusion flow was substantially higher in the pulsatile group throughout the bypass (ranged 48.5$\~$ 64 in group 1 vs. 65.8$\~$88.3 mL/min/100 g in group 2, p=0.026$\~$ 0.45) The difference was significant at 30 minutes bypass $(47.5{\pm}18.3\;in\;group\;1\;vs.\;83.4{\pm}28.5$ mL/min/100 g in group 2, p=0.026). Serologic parameters including plasma free hemoglobin, blood urea nitrogen, and creatinine showed no differences between the groups at 60 minutes after bypass (p=NS). Conclusion: Pulsatile flow is more beneficial to tissue perfusion of the kidney in short-term extracorporeal circulation. Further study is suggested to observe the effects to other vital organs or long-term significance.

배경 : 심장수술과 같은 체외순환(Extracorporeal circulation)이 요구되는 상황에서 조직관류에 우월할 것으로 보이는 박동성 혈류장치를 이용하려는 시도가 계속되어 왔다. 본 연구에서는 체외순환 조건에서 박동 혈류가 비박동 혈류보다 조직관류에 우월하다는 가설을 직접 증명하기 위해 치근 개발된 조직관류측정기($QFlow^{TM}-500$ Perfusion Measurement System, Thermal Technologies Inc.,Cambridge, MA, USA)의 열확산 탐침(Thermal Diffusion Probe)으로 조직 관류량을 실시간 및 연속적으로 직접 측정함으로써, 체외순환에서 박동 혈류와 비박동 혈류가 신장에 미치는 영향을 직접 관찰하고자 하였다. 대상 및 방법: 몸무게가 25 kg에서 40 kg 사이의 돼지를 암수 구별 없이 총 12마리를 각각 6마리씩 두개 군으로 나누어 실험을 진행하였다. 동물의 심장을 노출시킨 후, 좌측 측하복부를 절개하여 좌신장을 노출하여 관류측정기의 열확산 탐침을 신장의 피질내에 $2\~3$ cm 깊이로 거치하였다. 9볼트의 배터리로 심정지를 유도하면서 대동맥 차단을 하여 총심폐우회술을 시행한 후, 1군(n=6)은 Biopump에, 2군(n=6)은 박동식 혈류를 제공하는 T-PLS (Twin-Pulse Life Support System)에 연결하였다. 실험 동안 pump flow는 2 L/min로 유지하였다. 체외순환 전과 시작 후 10분마다 심박수, 혈압, 및 신장 관류치를 측정하여 60분까지 측정하고, 동맥혈가스분석, 전혈구 계산, 혈액 뇨질산, 크레아티닌 및 혈장 용혈헤모글로빈을 체외순환 시작 전과 60분 후에 측정하였다. 결과: 두 군 사이에 기초치는 유사하였다. 평균 혈압은 체외순환 전에는 두 군 간에 차이가 없었으나, 체외순환 20분 이후부터는 2군에서 높은 경향이 있었고(1군 $39.84\~45.5$ mmHg, 2군 $48.7\~52$ mmHg), 특히 60분에서의 평균혈압은 통계적으로 유의한 차이를 보였다(1군$\;41.2{\pm}4.3\;mmHg,\;48.7{\pm}5.4\;mmHg,\;p=0.023$). 체외순환 전 측정한 신장 관류치는 두 군간에 차이가 없었으나, 체외순환을 시작한 이후부터는 2군에서 지속적으로 더 높은 경향이 있었으며(1군 $48.5\~64$ mL/min100 g, 2군 $65.8\~88.3$ mL/min/100 g), 특히 30분에서의 측정값은 통계적으로 유의한 차이를 보였다(1군$47.5{\pm}18.3\;mL/min100\;g,$ 2군$83.4{\pm}28.5\;mL/min100\;g,\;p=0.026$). 혈액 뇨질산, 크레아티닌, 그리고 혈장 용혈헤모글로빈의 변화는 두 군간에 차이가 없었다. 결론: 일정한 펌프 혈류 조건에서 박동성 혈류의 평균 혈압이 더 높다는 것은, 비박동성 혈류보다 조직관류압(Tissue Perfusion Pressure) 측면에서 우수하여 말초장기의 조직관류 효과에 유리한 요인이라고 볼 수 있다. 본 연구를 토대로 장시간의 체외순환에서는 신장기능을 대표하는 수치들에도 영향을 미칠 수 있으리라 예상되며, 신장 이외에 다른 주요 장기에 미치는 영향에 대한 연구를 더 진행할 필요가 있을 것으로 생각한다.

Keywords

References

  1. Gibbon JH. Application of a mechanical heart and lung apparatus to cardiac surgery. Minn Med 1954;37:171
  2. Goldstein DJ. Worldwide experience with the MicroMed DeBakey ventricular assist device as a bridge to transplantation. Circulation 2003;108(suppl II):II272-7 https://doi.org/10.1161/01.cir.0000087387.02218.7e
  3. Kim HM, Shin JS, Sun K, et al. Evaluation of the pulsatile ECLS system in heart failure model-An animal experiment-. Abstract book of the 9th annual meeting of the asian society for cardiovascular surgery 2001;384
  4. Zumbro GL, Shear G, Fishback ME, Galloway RF. A prospective evaluation of the pulsatile assist device. Ann Thorac Surg 1979;25:269-72
  5. Nose Y, Koji K, Tadashi N. Can we develop a nonpulsatile permanent rotary blood pump? yes we can. Artif Organs 1996;20:467-74 https://doi.org/10.1111/j.1525-1594.1996.tb04466.x
  6. Smith GJ, Roman RJ, Lombard JH. Evaluation of a laser-doppler flowmetry as a measure of tissue blood flow. Appl Physio 1986;666-72
  7. Martin GT, Bowman HF. Validation of real-time continuous perfusion measurement. Med Bio Eng Comput 2000;38:319-25 https://doi.org/10.1007/BF02347053
  8. Vajkoczy P, Roth H, Horn P, et al. Continuous monitoring of regional cerebral blood flow: experimental and clinical validation of a novel thermal diffusion microprobe. J Neurosurg 2000;93:265-74 https://doi.org/10.3171/jns.2000.93.2.0265
  9. Klar E, Kraus T, Bleyl J, et al. Thermodiffusion for continuous quantification of hepatic microcirculation-validation and potential in liver transplantation. Microvascular Research 1999;58:156-66 https://doi.org/10.1006/mvre.1999.2166
  10. Kraus T, Klar E, Osswald BR, et al. Continuous measurement of porcine renal cortex microcirculation with enhanced thermal diffusion technology. J Surg Res 1996;61:531-6 https://doi.org/10.1006/jsre.1996.0159
  11. Lee HS, Rho YR, Lee HS, et al. In vivo evaluation of the pulsatile ECLS system. J Artif Organs 2003;6:25-9 https://doi.org/10.1007/s100470300004
  12. Akira S, Motomi S, Yukihiko O, et al. Major organ function under mechanical support: comparative studies of pulsatile and nonpulsatile circulation. Artif Organs 1999;23:280-5 https://doi.org/10.1046/j.1525-1594.1999.06318.x
  13. Conlon PJ, Mark SS, White WD, et al. Acute renal failure following cardiac surgery. Nephrol Dial Transplant 1999;14: 1158-62 https://doi.org/10.1093/ndt/14.5.1158
  14. Hickey PR, Buckley MJ, Philbin DM. Pulsatile and nonpulsatile cardiopulmonary bypass: Review of a counterproductive controversy. Ann Thorac Surg 1983;36:720-37 https://doi.org/10.1016/S0003-4975(10)60286-X
  15. Fukae K, Tominaga R, Tokunaga S, Kawachi Y, Imaizumi T, Yasui H. The effects of pulsatile nad nonpulsatile systemic perfusion on renal sympathetic nerve activity in anesthetized dogs. J Thorac Cardiovasc Surg 1996;111:478-84 https://doi.org/10.1016/S0022-5223(96)70459-2
  16. Minami K, Korner MM, Vyska K, Kleesiek K, Knobi H, Korfer R. Effects of pulsatile perfusion on plasma catecholamine levels and hemodynamics during and after cardiac operations with cardiopulmonary bypass. J Thorac Cardiovasc Surg 1990;99:82-91
  17. Nakano T, Tominaga R, Ichiro N, Hayato O, Yasui H. Pulsatile flow enhances endothelium-derived nitric oxide release in the peripheral vasculature. Am J Physiol Heart Circ Physiol 2000;278:H1098-104 https://doi.org/10.1152/ajpheart.2000.278.4.H1098
  18. Yukihiko O, Motomi S, Hiroaki H, et al. Cytokine and endothelial damage in pulsatile and nonpulsatile cardiopulmonary bypass. Artif Organs 1999;23:508-12 https://doi.org/10.1046/j.1525-1594.1999.06392.x
  19. Milnor WR. Pulsatile blood flow. New Engl J Med 1972; 287:27
  20. Paquet KJ. Hemodynamic studies on normothermic perfusion of the isolated pig kidney with pulsatile and nonpulsatile flows. J Cardiovasc Surg (Torino) 1969;1:45-9
  21. Sun K, Baek KJ, Kim YH, et al. Comparative studies of pulsatile and nonplusatile blood flow during cardiopulmonary bypass. Korean J Thorac Cardiovasc Surg 1985;18:182-92
  22. Akira S, Motomi S, Yukihiko O, et al. Renal circulation and cellular metabolism during left ventricular assisted circulation: comparison study of pulsatile and nonpulsatile assists. Artif Oragns 1997;21:830-5 https://doi.org/10.1111/j.1525-1594.1997.tb03752.x
  23. Undar A, Masai T, Beyer EA, Goddard-Finegold J, McGarry MC, Fraser CD Jr. Pediatric physiology pulsatile pump enhances cerebral and renal blood flow during and after cardiopulmonary bypass. Artif Organs 2002;26:919-23 https://doi.org/10.1046/j.1525-1594.2002.07127.x
  24. Murkherjee ND, Beran AV, Hirai J, et al. In vivo determination of renal tissue oxygenation during pulsatile and nonpulsatile left heart bypass. Ann Throac Surg 1973;15: 354-9 https://doi.org/10.1016/S0003-4975(10)65315-5
  25. Martin GT, Bowman HF. Validation of real-time continuous perfusion measurement. Med Biol Eng Comut 2000;38:319-25 https://doi.org/10.1007/BF02347053
  26. Nishimura T, Tatsumi E, Nishinaka T, et al. Diminished vasoconstrictive function caused by long-term nonpulsatile left heart bypass. Artif Organs 1999;23:722-6 https://doi.org/10.1046/j.1525-1594.1999.06410.x
  27. Matsuda H, Hirose H, Nakano S, et al. Results of open heart surgery in patients with impaired renal function. J Cardiovasc Surg 1986;27:595-9
  28. Ohnishi H, Tsuyoshi Itoh, Nishinaka T, et al. Morphological changes of the arterial system in the kidney under prolonged continuous flow left heart bypass. Artif Organs 2002;26: 974-79 https://doi.org/10.1046/j.1525-1594.2002.07135.x