Pareto 유전자 알고리즘을 이용한 초소형 유도결합 안테나 설계

Design of Small Antennas with Inductively Coupled Feed Using a Pareto Genetic Algorithm

  • 조치현 (홍익대학교 전자전기공학부) ;
  • 추호성 (홍익대학교 전자전기공학부) ;
  • 박익모 (아주대학교 전자공학부) ;
  • 김영길 (아주대학교 전자공학부)
  • Cho Chihyun (School of Electronic and Electrical Engineering, Hongik University) ;
  • Choo Hosung (School of Electronic and Electrical Engineering, Hongik University) ;
  • Park Ikmo (School of Electrical and Computer Engineering, Ajou University) ;
  • Kim Youngkil (School of Electrical and Computer Engineering, Ajou University)
  • 발행 : 2005.01.01

초록

본 논문에서는 NEC 코드와 Pareto 유전자 알고리즘 최적화 기법을 이용하여 초소형 유도결합 안테나를 설계하였다. 최적화된 유도결합 안테나 중 몇 가지 표본을 제작하고 성능을 측정하였다. 일반적으로 안테나의 크기가 작아질수록 입력 저항, 대역폭 및 효율이 감소하는데 비하여 제안된 방법으로 설계된 유도결합 안테나는 다른 부가적인 정합회로 없이 우수한 성능을 보인다. 간단한 회로 모델을 도입하여 제안된 유도결합 안테나의 동작원리를 설명하였고, Duroid 기판 위에 평면 구조로 제작하여 RFID 태그 안테나로써 성능을 입증하였다.

In this paper, we explore the inductively coupled concept and propose a class of electrically small planar antennas. The antennas are optimized using NEC in conjunction with a Pareto GA. These antennas show good efficiency and bandwidth performance without any additional matching network. Several optimized designs are fabricated and measured. We explain the operating principle of these antennas using a simple lumped element circuit model. The proposed antennas are translated as printed lines on Duroid for RFID tag antennas.

키워드

참고문헌

  1. G. Goubau, N. Puri, and F. Schwering, 'Diakoptic theory for multielement antennas', IEEE Trans. Antennas Propagat., vol. 30, pp. 15-26 , Jan. 1982 https://doi.org/10.1109/TAP.1982.1142741
  2. H. D. Foltz, J. S. McLean, and G. Crook, 'Diskloaded monopoles with parallel strip elements', IEEE Trans. Antennas Propagat., vol. 46, pp. 1894-1896, Dec. 1998 https://doi.org/10.1109/8.743844
  3. J. A. Dobbins, R. L. Rogers, 'Folded conical helix antenna', IEEE Trans. Antennas Propagat., vol. 49, pp. 1777-1781, Dec. 2001 https://doi.org/10.1109/8.982460
  4. E. E. Altshuler, 'Electrically small self-resonant wire antennas optimized using a genetic algorithm', IEEE Trans. Antennas Propagat., vol. 50, pp. 297-300, Mar. 2002 https://doi.org/10.1109/8.999619
  5. H. Choo, H. Ling, 'Design of electrically small planar antennas using an inductively coupled feed', Electron. Lett., vol. 39, pp. 3080-3081, Oct. 2003
  6. G. J. Burke, A. J. Poggio, Numerical Electromagnetics Code (NEC)-Method of Moments, Lawrence Livermore Laboratory, 1981
  7. D. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison Wesley, Reading, MA, 1989
  8. Y. Rahmat-Samii, E. Michielssen, Electromagnetic Optimization by Genetic Algorithms, New York: John Wiley & Sons, 1999
  9. J. S. McLean, 'A re-examination of the fundamental limits on the radiation Q of electrically small antennas', IEEE Trans. Antennas Propagat., vol. 44, pp. 672-676, May 1996 https://doi.org/10.1109/8.496253
  10. N. Srinivas, K. Deb, 'Multiobjective optimization using nondominated sorting in genetic algorithm', J. Evolutionary Computation, vol. 2, pp. 221-248, 1995
  11. J. Horn, N. Natpliotis, and D. E. Goldberg, 'A niched Pareto genetic algorithm for multiobjective optimization', Proc. First IEEE Conf. Evolutionary Computation, vol. 1, pp. 82-87, 1994
  12. J. Hiroyasu, M. Miki, and S. Watanabe, 'The new model of parallel genetic algorithm in multi-objective optimization problems - divided range multi-objective genetic algorithm', Proc. 2000 Congress on Evolutionary Computation, vol. 1, pp. 333-340, 2000
  13. H. A. Wheeler, 'The radiansphere around a small antenna', Proc. IRE, vol. 47, pp. 1325-1331, Aug. 1959
  14. http://www.hitachi.co.jp/Prodlmu-chip/index.html
  15. David E. Johnson, John L. Hilburn, Johnny R. Johnson, and Peter D. Scott, Basic Electric Circuit Analysis, Prentice Hall, 1995