IHP 알고리즘을 이용한 SIMO 시스템용 적응 직접 결정 등화기 연구

An Adaptive Decision-Directed Equalizer using Iterative Hyperplane Projection for SIMO systems

  • 이원철 (숭실대학교 정보통신전자공학부)
  • 발행 : 2005.01.01

초록

본 논문은 iterative hyperplane projection 을 이용한 효율적인 APA(affine projection algorithm)을 소개한다. 다양한 적응 알고리즘들 중 APA는 랭크 부족 문제를 해결하며 고속 수렴의 특성 때문에 다양한 응용분야에 적용되고 있다. SIMO(Single-Input-Multiple-Output) 시스템을 위한 STDE(Space-Time Decision- directed Equalizer) 적용 시 흔히 단일 채널 환경에서 발생하는 "shifting invariance property"를 이용할 수 없으므로 인해 FTF(Fast Transversal Filter)와 같이 저 복잡도를 갖는 고속 적응 알고리즘을 사용할 수 없다. 따라서 APA 기반의 STDE 기능을 수행하는 과정에서 SMI(Sample Matrix Inversion) 처리가 불가피하며, 계산상의 복잡도가 증가하게 된다. 이러한 문제점을 해결하고자 본 논문에서는 APA 기법 고유의 우수한 추적 특성 및 고속 수렴 성질을 유지하면서, 낮은 복잡도를 갖는 IHP(Iterative Hyperplane Projection) 알고리즘 기반의 효율적인 수정 APA 기법을 소개한다. 제안된 IHP 기반 APA 기법의 성능을 확인하기 위하여, 무선 SIMO 채널 환경 하에서 제안된 IHP-APA 알고리즘을 적용한 STED에 대한 비트 에러 오률 (BER) 특성과 계산량 분석을 통해서 우수성을 입증하였다.

This paper introduces an efficient affine projection algorithm(APA) using iterative hyperplane projection. Among various fast converging adaptation algorithms, APA has been preferred to be employed for various applications due to its inherent effectiveness against the rank deficient problem. However, the amount of complexity of the conventional APA could not be negligible because of the accomplishment of sample matrix inversion(SMI). Moreover, the 'shifting invariance property' usually exploited in single channel case does not hold for the application of space-time decision-directed equalizer(STDE) deployed in single-input-multi-output(SIMO) systems. Thus, it is impossible to utilize the fast adaptation schemes such as fast transversal filter(FlF) having low-complexity. To accomplish such tasks, this paper introduces the low-complexity APA by employing hyperplane projection algorithm, which shows the excellent tracking capability as well as the fast convergence. In order to confirm th validity of the proposed method, its performance is evaluated under wireless SIMO channel in respect to bit error rate(BER) behavior and computational complexity.

키워드

참고문헌

  1. P. W. Wolniansky, G. J. Foschini, G. D. Golden, and R. A. Valenzuela, 'V-BLAST : An architecture for realizing very high data rates over the rich-scattering wireless chnnel', Proc. ISSSE-98, Pisa, Italy, 1998
  2. J. G. Proakis, Digital Communications, McGraw-Hill, 4th ed., 2001
  3. W. Huang and T. S. Rappaport, 'A comparative study of two adaptive equalizers for mobile radio', Proc. 41st IEEE Vehicular Technology Conference (VTC'91), pp. 765-769, St. Louis, USA, 1991
  4. J. Kermoal, L. Schumacher, K. Pedersen, P. Mogensen, and F. Frederiksen, 'A stochastic MIMO radio channel model with experimental validation', IEEE J. Select. Areas Commun., vol. 20, no. 6, pp. 1211-1226, Aug. 2002 https://doi.org/10.1109/JSAC.2002.801223
  5. S. Makino and Y. Kaneda, 'Exponentially Weighted Stepsize Projection Algorithm for Acoustic Echo Cancellers', IEICE Trans. Fundamentals, vol. E75-A, no. 11, pp. 1500-1508, Nov. 1992
  6. B. B. Raghothaman, Equalizers for wireless and wireline digital communications, M.S. Thesis, Univ. of Texas at Dallas, May, 1997
  7. S. C. Douglas, 'Efficient approximate implementations of the fast affine projection algorithm using orthogonal transformation', Proc. IEEE International Conf. Acoust., Speech, Signal Processing, vol. 3, pp. 1656-1659, USA, May 1997
  8. S. L. Gay, 'A fast converging, low complexity adaptive filtering algorithm', Proc. IEEE workshop on Appls. of Sig. Proc. to Audio and Acoust., pp. 4-7, Oct. 1993
  9. Haykin, Adaptive Filter Theory, 3rd E., Prentice-Hall, 1996
  10. M. Tanaka, Y. Kaneda, S. Makino and J. Kojima, 'A fast projection algorithm for adaptive filtering', IEICE Trans., Fundamentals, vol. E78-A, no. 10, pp. 1355-1361, Oct. 1995
  11. T. Kailath, Linear systems, Englewood Cliffs, N. J., Prentice Hall
  12. K. Ozeki and T. Umeda, 'An Adaptive Filtering Algorithm using an Orthogonal Projection to an Affine Subspace and its Property', IEICE Trans. Electron. Comm., vol. 67-A, pp. 19-27, 1984
  13. S. U. Pillai and W. C. Lee, High resolution active wideband imaging, Technical Report, Dept. of Electrical Engineering, Polytechnic Univ., New York, USA
  14. 3GPP, 'Tx diversity solutions for multiple antennas', 3GPP TSG RAN WG1 document TR25.869 V0.1.1, Nov. 2001