Nuclear Factor-κB(NF-κB) Activity and Levels of IL-6, IL-8 and TNF-α in Induced Sputum in the Exacerbation and Recovery of COPD Patients

만성폐쇄성폐질환의 급성악화와 회복기에서 유도객담 내 Nuclear Factor-κB(NF-κB)의 활성도와 IL-6, IL-8 및 TNF-α의 농도 변화

  • Song, So Hyang (Department of Internal Medicine, The Catholic University of Korea) ;
  • Kim, Chi Hong (Department of Internal Medicine, The Catholic University of Korea) ;
  • Kwon, Soon Seog (Department of Internal Medicine, The Catholic University of Korea) ;
  • Kim, Young Kyoon (Department of Internal Medicine, The Catholic University of Korea) ;
  • Kim, Kwan Hyoung (Department of Internal Medicine, The Catholic University of Korea) ;
  • Moon, Hwa Sik (Department of Internal Medicine, The Catholic University of Korea) ;
  • Song, Jeong Sup (Department of Internal Medicine, The Catholic University of Korea) ;
  • Park, Sung Hak (Department of Internal Medicine, The Catholic University of Korea)
  • 송소향 (가톨릭대학교 의과대학 내과학교실) ;
  • 김치홍 (가톨릭대학교 의과대학 내과학교실) ;
  • 권순석 (가톨릭대학교 의과대학 내과학교실) ;
  • 김영균 (가톨릭대학교 의과대학 내과학교실) ;
  • 김관형 (가톨릭대학교 의과대학 내과학교실) ;
  • 문화식 (가톨릭대학교 의과대학 내과학교실) ;
  • 송정섭 (가톨릭대학교 의과대학 내과학교실) ;
  • 박성학 (가톨릭대학교 의과대학 내과학교실)
  • Received : 2004.11.29
  • Accepted : 2005.02.01
  • Published : 2005.02.28

Abstract

Background : Exacerbations of chronic obstructive pulmonary disease (COPD) are thought to be associated with increased airway inflammation, and the $NF-{\kappa}B$ is known to be an indicator of cellular activation and of inflammatory mediator production. This study was undertaken to investigate the change of cytokine characteristics and $NF-{\kappa}B$ activity in induced sputum of COPD patients during exacerbation and recovery of the disease. Methods : Sputum induction was performed in 37 patients with COPD during exacerbation and during recovery and in 15 healthy subjects. Cell counts, levels of IL-6, IL-8 and $TNF-{\alpha}$ in induced sputum and NF-kB activity in macrophage of induced sputum were measured. Results : Patients with COPD showed significantly increased levels of IL-6, IL-8 and $TNF-{\alpha}$(p<0.01) and increased $NF-{\kappa}B$ activity in induced sputum(p<0.05) as compared with control subjects. Level of IL-8 during exacerbation of COPD decreased significantly during recovery(p<0.05). $NF-{\kappa}B$ activity and levels of IL-6 and $TNF-{\alpha}$ tended to be decreased during recovery, but not siginificantly. Conclusion : Activation of $NF-{\kappa}B$ and increased levels of IL-6, IL-8 and $TNF-{\alpha}$ were thought to be associated with pathogenesis and exacerbations of COPD.

연구배경 : COPD의 급성악화는 세균에 의한 감염, 바이러스성 상기도 감염, 대기오염, 기후변화 등에 의하며, COPD의 급성악화 시에 객담 내 호중구의 증가, IL-6와 IL-8 농도의 증가, 그리고 산화질소의 증가는 $NF-{\kappa}B$의 활성화와 관련된 것으로 알려져 있다. 그러므로 COPD의 병인 및 급성악화의 기전에 $NF-{\kappa}B$ 활성도와 IL-6, IL-8 및 $TNF-{\alpha}$가 관련이 있는지 연구하고자 하였다. 방 법 : 정상대조군 및 COPD로 입원하였던 환자들의 급성악화기 및 치료 후 회복기에 유도객담에서 IL-6, IL-8, $TNF-{\alpha}$, $NF-{\kappa}B$ 활성화 정도를 측정하여 비교하였다. 결 과 : 1) 유도객담내의 IL-6, IL-8 및 $TNF-{\alpha}$는 COPD 환자에서 대조군에 비해 유의하게 증가되었다(p<0.01). IL-8은 급성악화 시에 비해 회복기에 유의하게 감소되었고(p<0.05), IL-6와 $TNF-{\alpha}$는 회복기에도 차이가 없었다. 2) 유도객담 내 대식세포에서의 $NF-{\kappa}B$의 활성도는 COPD 환자에서 대조군에 비해 유의하게 증가 되었고(p<0.05), 회복기에는 악화 시에 비해 감소하는 경향을 보였다. 결 론 : COPD 환자에서 유도객담 내 IL-6, IL-8, $TNF-{\alpha}$$NF-{\kappa}B$의 활성도 등이 정상대조군에 비해 증가되었고, 회복기에 IL-8은 감소하였고, $NF-{\kappa}B$의 활성도, IL-6 및 $TNF-{\alpha}$는 감소하는 경향을 보여서, COPD의 급성악화 및 COPD의 병인에 $NF-{\kappa}B$가 일부 관여할 것으로 생각된다.

Keywords

References

  1. Christman JW, Sadikot RT, Blackwell TS. The role of Nuclear factor-$\kappa$B in pulmonary diseases. Chest 2000;117:1482-7 https://doi.org/10.1378/chest.117.5.1482
  2. Barnes PJ, Karin M. Nuclear factor-$\kappa$B: a pivotal transcription factor in chronic inflammatory disease. N Engl J Med 1997;336:1066-71 https://doi.org/10.1056/NEJM199704103361506
  3. Barnes PJ. Chronic obstructive pulmonary disease. N Engl J Med 2000;343:269-80 https://doi.org/10.1056/NEJM200007273430407
  4. Niewoehner DE, Erbland ML, Deupree RH, Collins D, Gross NJ, Light RW, et al. Effect of systemic glucocorticoids on exacerbations of chronic obstructive pulmonary disease. N Engl J Med 1999;340:1941-7 https://doi.org/10.1056/NEJM199906243402502
  5. Davis L, Angus RM, Carverley PM. Oral corticos. teroids in patients admitted to hospital with ex. acerbations of chronic obstructive pulmonary disease: a prospective randomised controlled trial. Lancet 1999;354:456-60 https://doi.org/10.1016/S0140-6736(98)11326-0
  6. Seemungal TA, Wedzicha JA. Viral infection in obstructive airway disease. Curr Opin Pulm Med 2003;9:111-6 https://doi.org/10.1097/00063198-200303000-00004
  7. Donaldson GC, Seemungal T, Jeffries DJ, Wedzicha JA. Effect of temperature on lung function and symptoms in chronic obstructive pulmonary disease. Eur Respir J 1999;13:844-9 https://doi.org/10.1034/j.1399-3003.1999.13d25.x
  8. Bhowmik A, Seemungal TA, Sapsford RJ, Wedzicha JA. Relation of sputum inflammatory markers to symptoms and lung function changes in COPD ex. acerbations. Thorax 2000;55:114-20 https://doi.org/10.1136/thorax.55.2.114
  9. Tak PP, Firenstein GS. NF-$\kappa$B: a key role in in. flammatory diseases. J Clin Invest 2001;107:7-11 https://doi.org/10.1172/JCI11830
  10. Baldwin AS Jr. The trascription factor NF-$\kappa$B and human disease. J Clin Invest 2001;107:3-6 https://doi.org/10.1172/JCI11891
  11. di Stefano A, Caramori G, Oates T, Capelli A, Lusuardi M, Gnemmi I, et al. Increased expression of nuclear factor-kB in bronchial biopsies from smokers and patients with COPD. 2002;20:556-63 https://doi.org/10.1183/09031936.02.00272002
  12. Camori G, Romagnoli M, Casolari P, Bellettato C, Casoni G, Boschetto P, et al. Nuclear localisation of p65 in sputum macrophages but not in sputum neutrophils during COPD exacerbations. Thorax 2003; 58:348-51 https://doi.org/10.1136/thorax.58.4.348
  13. American Thoracic Society. Standards for the diagnosis and care of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1995:152;S77-121'
  14. Pizzichini E, Pizzichini MM, Efthimiadis A, Evans S, Morris MM, Squillace D, et al. Indices of airway inflammation in induced sputum: reproducibility and validity of cell and fluid phase measurements. Am J Respir Crit Care Med 1996;154:308-17 https://doi.org/10.1164/ajrccm.154.2.8756799
  15. Carter AB, Monick MM, Hunninghake GW. Lipo. polysarccharideinduced NF-$\kappa$B activation and cytokine release in human alveolar macrophages is PKC-independent and TK- and PC-PLC-dependent. Am J Respir Cell Mol Biol 1998;18:384-91.5 https://doi.org/10.1165/ajrcmb.18.3.2972
  16. Jeffery PK. Structural and inflammatory changes in COPD: a comparison with asthma. Thorax 1998;53: 129-36 https://doi.org/10.1136/thx.53.2.129
  17. MacNee W, Rahman I. Is oxidative stress central to the pathogenesis of chronic obstructive pulmonary disease? Trends Mol Med 2001;7:55-62 https://doi.org/10.1016/S1471-4914(01)01912-8
  18. Churg A, Dai J, Tai H, Xie C, Wright JL. Tumor ne. crosis factor-alpha is central to acute cigarette smokeinduced inflammation and connective tissue break. down. Am J Respir Crit Care Med 2002;166: 849-54 https://doi.org/10.1164/rccm.200202-097OC
  19. Woolhouse IS, Bayley DL, Stokley RA. Sputum che. motactic activity in chornic obstructive pulmonary disease: effect of alpha1-antitrypsin deficiency and the role of leukotriene B4 and interleukin 8. Thorax 2002;57:709-14 https://doi.org/10.1136/thorax.57.8.709
  20. Keatings VM, Collins PD, Scott DM, Barnes PJ. Differences in interleukin-8 and tumor necrosis factor-alpha induced sputum from patients with chronic obstructive pulmonary disease or asthma. Am J Respir Crit Care Med 1996;153:530-4 https://doi.org/10.1164/ajrccm.153.2.8564092
  21. Yamamoto C, Yoneda T, Yoshikawa M, Fu A, Tokuyama T, Tsukaguchi K, et al. Airway inflammation in COPD assessed by sputum levels of interleukin-8. Chest 1997;112:505-10 https://doi.org/10.1378/chest.112.2.505
  22. Vernooy JH, Kucukaycan M, Jacobs JA, Chavannes NH, Buurman WA, Dentener MA, et al. Local and systemic inflammation in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2002;166:1218-24 https://doi.org/10.1164/rccm.2202023
  23. Stockley RA. Role of bacteria in the pathogenesis and progression of acute and chronic lung infection. Thorax 1998;53:58-62 https://doi.org/10.1136/thx.53.1.58
  24. Wedzicha JA. Exacerbations: etiology and patho. physiologic mechanisms. Chest 2002;121:136s-41s https://doi.org/10.1378/chest.121.5_suppl.136S
  25. Subauste M, Jacoby D, Richards S, Proud D. Infection of a human respiratory epithelial cell line with rhi. novirus. J Clin Invest 1995;96:549-57 https://doi.org/10.1172/JCI118067
  26. Khair OA, Devalia JL, Abdelaziz MM, Sapsford RJ, Tarraf H, Davies RJ. Effect of Haemophilus influenzae endotoxin on the synthesis of IL-6, IL-8, TNF-$\alpha$ and expression of ICAM 1 in cultured human bro. nchial epithelial cells. Eur Respir J 1994;7:2109-16 https://doi.org/10.1183/09031936.94.07122109
  27. Adok IM, Shirasaki H, Gelder CM, Peter MJ, Brown CR, Barn PJ. The effects of glucocorticoids on phorbol ester and cytokine stimulated transcription factor activa -tion in human lung. Life Sci 1994;55: 1147-53 https://doi.org/10.1016/0024-3205(94)00243-6
  28. Scheinman RI, Gualberto A, Jewell CM, Cidlowski JA, Baldwin AS Jr. Characterization of mechanisms involved in transcription of NF-$\kappa$B by activated glucocorticoid receptors. Mol Cell Biol 1995;15:943-53 https://doi.org/10.1128/MCB.15.2.943