Synergism Induced by Combination of Farnesyl Transferase Inhibitor SCH66336 and Insulin like-Growth Factor Binding Protein-3 in apoptosis of Non-Small Cell Lung Cancer Cell lines

비소세포성 폐암 세포주에서 Farnesyl Transferase Inhibitor SCH66336과 인슐린양 성장 인자 결합 단백-3의 병용처리에 의한 세포고사 상승 작용

  • Kim, Young (Department of Internal Medicine, Yonsei University College of Medicine) ;
  • Kim, Se Kyu (Department of Internal Medicine, Yonsei University College of Medicine) ;
  • Kim, Hyung Jung (Department of Internal Medicine, Yonsei University College of Medicine) ;
  • Chang, Joon (Department of Internal Medicine, Yonsei University College of Medicine) ;
  • Ahn, Chul Min (Department of Internal Medicine, Yonsei University College of Medicine) ;
  • Kim, Sung Kyu (Department of Internal Medicine, Yonsei University College of Medicine) ;
  • Chang, Yoon Soo (Department of Internal Medicine, Yonsei University College of Medicine)
  • 김영 (연세대학교 의과대학 내과학교실) ;
  • 김세규 (연세대학교 의과대학 내과학교실) ;
  • 김형중 (연세대학교 의과대학 내과학교실) ;
  • 장준 (연세대학교 의과대학 내과학교실) ;
  • 안철민 (연세대학교 의과대학 내과학교실) ;
  • 김성규 (연세대학교 의과대학 내과학교실) ;
  • 장윤수 (연세대학교 의과대학 내과학교실)
  • Received : 2004.11.05
  • Accepted : 2004.12.22
  • Published : 2005.02.28

Abstract

Background : Insulin-like growth factor binding protein (IGFBP)-3 regulates non-small cell lung cancer(NSCLC) cell proliferation in vitro and in vivo by inhibiting IGF-mediated signaling pathways. To have better strategies for the treatment of lung cancer, we analyzed the combining effects of adenovirus expressing IGFBP-3 (Ad5CMV-BP3) and SCH66336, a farnesyl transferase inhibitor (FTI) designed to block Ras-mediated proliferative signaling pathways. Methods : To measure the combining effects of Ad5CMV-BP3 and SCH66336 on the proliferation of NSCLC cells, human NSCLC cell lines (H1299, H596, A549, H460, and H358), SCH66336, recombinant adenovirus expressing IGFBP-3 (Ad5CMV-BP3) and athymic nude mice were used in these experiments. Results : The combination of Ad5CMV-BP3 and SCH66336 produced a synergistic enhancement in antiproliferative effects over a range of clinically achievable concentrations in a variety of NSCLC cell lines. Furthermore, we observed a significant reduction in growth of NSCLC xenograft induced in athymic nude mice. Conclusion : In conclusion, this study demonstrated for the first time that the FTI SCH66336 synergizes with IGFBP-3 and enhances its apoptotic activity in NSCLC cells in vitro and in vivo. The combined treatment of Ad5CMV-BP3 and SCH66336 raises the possibility of using this regimen in clinic for the treatment of NSCLC.

연구배경 : 인슐린 양 성장 인자 결합 단백질-3 (IGF binding protein-3, IGFBP-3)는 생체내와 실험관내에서 인슐린 양 성장인자 매개 신호전달 체계를 억제하여 비소 세포성 폐암 세포의 증식을 조절하는 것으로 알려져 있다. 이에 본 연구에서는 비소세포성 폐암의 치료에 있어 IGFBP-3를 이용한 치료전략의 개발을 위하여 IGFBP-3(Ad5CMV-BP3)와 FTI SCH66336의 병용치료 상승작용을 분석하였다. 방 법 : 비소세포성 폐암 세포주의 성장에 Ad5CMV-BP3와 SCH66336의 병용투여가 미치는 효과를 측정하기 위하여 비소세포성 폐암 세포주와 IGFBP-3를 발현하는 recombinant adenovirus(Ad5CMV-BP3)를 이용하였고 흉선이 없는 nude mice의 등에 H1299 폐암 세포를 피하 주사한 후 Ad5CMV-BP3와 SCH66336의 병용치료 상승작용을 단일 치료와 비교 분석하였다. 결 과 : SCH66336과 Ad5CMV-BP3 병용처리는 단일 약제보다 더 큰 증식 억제효과 상승작용을 보였으며 nude mice에서도 병용치료 시 종양의 부피는 매우 의미 있는 감소를 보였다. 결 론 : 본 연구의 결과를 통하여 저자들은 SCH66336이 IGFBP-3와 병용투여시 실험실내와 생체내에서 비소 세포성 폐암세포의 세포자멸사에 상승적인 효과가 있다는 것을 처음으로 입증하였으며, 이는 비소세포성 폐암의 치료에 있어 Ad5CMV-BP3와 SCH66336의 병용치료가 임상적으로 사용될 수 있음을 시사하는 것이라 하겠다.

Keywords

References

  1. Parkin DM, Pisani P, Ferlay J. Estimates of the worldwide incidence of 25 major cancers in 1990. Int J Cancer 1999;80:827-41 https://doi.org/10.1002/(SICI)1097-0215(19990315)80:6<827::AID-IJC6>3.0.CO;2-P
  2. Gibbs JB. Anticancer drug targets: growth factors and growth factor signaling. J Clin Invest 2000; 105:9-13 https://doi.org/10.1172/JCI9084
  3. Brodt P, Samani A, Navab R. Inhibition of the type-I insulin-like growth factor receptor expression and signaling: novel strategies for antimetastatic therapy. Biochem Pharmacol 2000;60:1101-7 https://doi.org/10.1016/S0006-2952(00)00422-6
  4. Shigematsu K, Kataoka Y, Kamio T, Kurihara M, Niwa M, Tsuchiyama H. Partial characterization of insulin-like growth factor-1 in primary human lung cancers using immunohistochemical and receptor au. toradiographic techniques. Cancer Res 1990;50:2481-4
  5. Lee HY, Chun KH, Liu B, Wiehle SA, Cristiano RJ, Hong WK, et al. Insulin-like growth factor binding protein-3 inhibits the growth of non-small cell lung cancer. Cancer Res 2002;62:3530-7
  6. Chang YS, Wang L, Liu D, Mao L, Khuri FR, Hong WK, et al. Correlation between insulin-like growth factor-binding protein-3 promoter methylation and prognosis of patients with stage I non-small cell lung cancer. Clin Cancer Res 2002;8:3669-75
  7. del Giudice ME, Fantus IG, Ezzat S, McKeown- Eyssen G, Page D, Goodwin PJ. Insulin and related factors in premenopausal breast cancer risk. Breast Cancer Res Treat 1998;47:111-20 https://doi.org/10.1023/A:1005831013718
  8. London SJ, Yuan JM, Travlos GS, Gao YT, Wilson RE, Ross RK, et al. Insulin-like growth factor I, IGF-binding protein 3, and lung cancer risk in a prospective study of men in China. J Natl Cancer Inst 2002;94:749-54 https://doi.org/10.1093/jnci/94.10.749
  9. Polosa R, Prosperini G, Leir SH, Holgate ST, Lackie PM, Davies DE. Expression of c-erbB receptors and ligands in human bronchial mucosa. Am J Respir Cell Mol Biol 1999;20:914-23 https://doi.org/10.1165/ajrcmb.20.5.3308
  10. Njoroge FG, Vibulbhan B, Pinto P, Bishop WR, Bryant MS, Nomeir AA, et al. Potent, selective, and orally bioavailable tricyclic pyridyl acetamide Noxide inhibitors of farnesyl protein transferase with enhanced in vivo antitumor activity. J Med Chem 1998;41:1561?7
  11. Liu M, Bryant MS, Chen J, Lee S, Yaremko B, Lipari P, et al. Antitumor activity of SCH 66336, an orally bioavailable tricyclic inhibitor of farnesyl protein transferase, in human tumor xenograft models and wap-ras transgenic mice. Cancer Res 1998;58: 4947-56
  12. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65:55-63 https://doi.org/10.1016/0022-1759(83)90303-4
  13. Chou TC, Talalay P. Quantitative analysis of doseeffect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 1984; 22:27-55 https://doi.org/10.1016/0065-2571(84)90007-4
  14. Prendergast GC. Farnesyltransferase inhibitors: an. tineoplastic mechanism and clinical prospects. Curr Opin Cell Biol 2000;12:166-73 https://doi.org/10.1016/S0955-0674(99)00072-1
  15. Lee HY, Moon H, Chun KH, Chang YS, Hassan K, Ji L, et al. Effects of insulin-like growth factor binding protein-3 and farnesyl transferase inhibitor SCH66336 on Akt expression and apoptosis in nonsmall- cell lung cancer cells. J Natl Cancer Inst 2004; 96:1536-48 https://doi.org/10.1093/jnci/djh286
  16. Nielsen LL, Shi B, Hajian G, Yaremko B, Lipari P, Ferrari E, et al. Combination therapy with the farnesyl protein transferase inhibitor SCH66336 and SCH58500 (p53 Adenovirus) in preclinical cancer models. Cancer Res 1999;59:5896-901
  17. Karp JE, Kaufmann SH, Adjei AA, Lancet JE, Wright JJ, End DW. Current status of clinical trials of farnesyltransferase inhibitors. Curr Opin Oncol 2001;13:470-6 https://doi.org/10.1097/00001622-200111000-00009
  18. Buckbinder L, Talbott R, Velasco-Miguel S, Takenaka I, Faha B, Seizinger BR, et al. Induction of the growth inhibitor IGF-binding protein 3 by p53. Nature 1995;377:646-9 https://doi.org/10.1038/377646a0
  19. Baxter RC. Signaling pathways involved in antipro- liferative effects of IGFBP-3: a review. Mol Pathol 2001;54:145-8 https://doi.org/10.1136/mp.54.3.145
  20. Brognard J, Clark AS, Ni Y, Dennis PA. Akt/protein kinase B is constitutively active in non-small cell lung cancer cells and promotes cellular survival and resistance to chemotherapy and radiation. Cancer Res 2001;61:3986-97
  21. Adjei AA, Davis JN, Bruzek LM, Erlichman C, Kaufmann SH. Synergy of the protein farnesyltransferase inhibitor SCH66336 and cisplatin in human cancer cell lines. Clin Cancer Res 2001;7:1438-45