사람 폐 섬유아세포의 전환성장인자-β1에 의한 fibronectin 분비와 α-smooth muscle actin 표현에 있어서 활성산소족의 역할

Role of Reactive Oxygen Species in Transforming Growth Factor-β1-inuduced Fibronectin Secretion and α-Smooth Muscle Actin Expression in Human Lung Fibroblasts

  • 하헌주 (순천향대학교 현암신장연구소) ;
  • 유미라 (순천향대학교 현암신장연구소) ;
  • 어수택 (순천향대학교 현암신장연구소) ;
  • 박춘식 (순천향대학교 현암신장연구소) ;
  • 이희발 (순천향대학교 현암신장연구소)
  • Ha, Hunjoo (Hyonam Kidney Laboratory, Soon Chun Hyang University) ;
  • Yu, Mi-Ra (Hyonam Kidney Laboratory, Soon Chun Hyang University) ;
  • Uh, Soo-taek (Hyonam Kidney Laboratory, Soon Chun Hyang University) ;
  • Park, Choon Sik (Hyonam Kidney Laboratory, Soon Chun Hyang University) ;
  • Lee, Hi Bahl (Hyonam Kidney Laboratory, Soon Chun Hyang University)
  • 투고 : 2004.12.14
  • 심사 : 2005.02.04
  • 발행 : 2005.03.30

초록

연구배경 : 전환성장인자-${\beta}1$(transforming growth factor-${\beta}1$: $TGF-{\beta}1$)은 폐 섬유화를 매개하는 주된 인자이지만 $TGF-{\beta}1$에 의한 폐 섬유화의 발생과 진행기전의 이해는 아직 불완전하다. $TGF-{\beta}1$은 다양한 세포에서 활성산소족(reactive oxygen species: ROS)을 통하여 세포내 신호를 전달하고 ${\alpha}$-smooth muscle actin (${\alpha}$-SMA)의 신생합성을 통하여 상피세포와 폐 섬유아세포를 근 섬유아세포 표현형으로의 변화를 유도하는 주된 인자이다. ROS는 또 다양한 세포에서 세포외기질 (extracellular matrix: ECM) 축적을 유발하는 것이 알려져 있음으로 본 연구에서는 폐 섬유아세포인 MRC-5 세포에서 $TGF-{\beta}1$이 ROS를 매개하여 fibronectin 분비와 ${\alpha}-SMA$ 표현의 증가에 관여하는지를 검색하였다. 방 법 : 성장이 동일화된 MRC-5 세포를 $TGF-{\beta}1$ (0.2-10ng/ml)으로 96 시간까지 자극하였고, 필요에 따라 항산화제인 N-acetylcysteine (NAC)이나 NADPH oxidase 억제제인 diphenyleniodonium (DPI)을 $TGF-{\beta}1$ 투여 1 시간 전부터 전처리하였다. Dichlorofluorescein (DCF)에 민감한 세포내 ROS는 FACS로, 분비된 fibronectin과 세포의 ${\alpha}-SMA$ 표현은 Western blot 분석으로 측정하였다. 결 과 : $TGF-{\beta}1$은 용량의존적으로 fibronectin 분비와 ${\alpha}-SMA$ 표현을 상향조절하였다. NAC와 DPI는 $TGF-{\beta}1$에 의한 fibronectin 분비 증가와 ${\alpha}-SMA$ 상향조절을 유의하게 억제하였다. $TGF-{\beta}1$에 의한 세포내 ROS의 증가도 NAC나 DPI에 의하여 유의하게 억제되었다. 결 론 : 본 연구의 결과는 폐 섬유아세포에서 NADPH oxidase 에 의하여 생산된 ROS가 $TGF-{\beta}1$에 의한 fibronectin 분비와 ${\alpha}-SMA$ 표현을 상향조절함으로써 폐 섬유화의 발생과 진행에 관여할 수 있음을 증명하였다.

Background : The transforming growth $factor-{\beta}1$ ($TGF-{\beta}1$) plays a key role in lung fibrosis. However, the molecular mechanisms involved in $TGF-{\beta}1$-induced lung fibrosis are unclear. $TGF-{\beta}1$ is the key inducer of myofibroblast transdifferentiation via de novo synthesis of ${\alpha}-smooth$ muscle actin (${\alpha}-SMA$). Since $TGF-{\beta}1$ signals through reactive oxygen species (ROS) and ROS have been shown to induce accumulation of extracellular matrix (ECM) in various tissues, this study examined if ROS play a role in $TGF-{\beta}1$-induced fibronectin secretion and ${\alpha}-SMA$ expression in human lung fibroblasts, MRC-5 cells. Methods : Growth arrested and synchronized MRC-5 cells were stimulated with $TGF-{\beta}1$ (0.2-10 ng/ml) in the presence or absence of N-acetylcysteine (NAC) or diphenyleneiodonium (DPI) for up to 96 hours. Dichlorofluorescein (DCF)-sensitive cellular ROS were measured by FACScan and secreted fibronectin and cellular ${\alpha}-SMA$ by Western blot analysis. Results : $TGF-{\beta}1$ increased the level of fibronectin secretion and ${\alpha}-SMA$ expression in MRC-5 cells in a dosedependent manner. Both NAC (20 and 30 mM) and DPI (1 and $5{\mu}M$) significantly inhibited $TGF-{\beta}1$-induced fibronectin and ${\alpha}-SMA$ upregulation. The $TGF-{\beta}1$-induced cellular ROS level was also significantly reduced by NAC and DPI. Conclusions : The results suggest that NADPH oxidase-dependent ROS play an important role in $TGF-{\beta}1$-induced fibronectin secretion and ${\alpha}-SMA$ expression in MRC-5 cells, which leads to myofibroblast transdifferentiation and progressive lung fibrosis.

키워드

참고문헌

  1. Phan SH. The myofibroblast in pulmonary fibrosis. Chest 2002;122:286S-9S https://doi.org/10.1378/chest.122.6_suppl.286S
  2. Adler KB, Low RB, Leslie KO, Mitchell J, Evans JN. Contratile cells in normal and fibrotic lung. Lab Invest 1989;60:473-85
  3. Mitchell J, Woodcock-Mitchell J, Reynolds S, Low R, Leslie K, Adler K, et al. $\alpha$-smooth muscle actin in parenchymal cells of bleomycin-injected rat lung. Lab Invest 1989;60:643-50
  4. Kuhn C, McDonald JA. The role of myofibroblast in idiopathic pulmonary fibrosis: ultrastructural and immunohistochemical features of sites of active extracellular matrix synthesis. Am J Pathol 1991;138:1257-65
  5. Pache JC, Christakos PG, Gannon DE, Mitchell JJ, Low RB, Leslie KO. Myofibroblasts in diffuse alveolar damage of the lung. Mod Pathol 1998;11:1064-70
  6. Zhang K, Rekhter MD, Gordon D, Phan SH. Myo. fibroblasts and their role in lung collagen gene ex. pression during pulmonary fibrosis: a combined im. munohistochemical and in situ hybridization study. Am J Pathol 1994;145:114-25
  7. Zhang K, Flanders KC, Phan SH. Cellular localization of transforming growth factor $\beta$ expression in bleo. mycin-induced pulmonary fibrosis. Am J Pathol 1995; 147:352-61
  8. Zhang HY, Gharaee-Kermani M, Zhang K, Karmiol S, Phan SH. Lung fibroblast $\alpha$-smooth muscle actin expression and contractile phenotype in bleomycininduced pulmonary fibrosis. Am J Pathol 1996;148: 527-37
  9. Zhang K, Gharaee-Kermani M, Jones ML Warren JS, Phan SH. Lung monocyte chemoattractant protein-1 gene expression in bleomycin-induced pulmonary fibrosis. J Immunol 1994;153:4733-41
  10. Coker RK, Laurent GJ, Shahzeidi S, Hernandez- Rodriguez NA, Pantelidis P, du Bois RM, et al. Diverse cellular TGF-$\alpha$1 and TGF-$\alpha$3 gene expression in normal human and murine lung. Eur Respir J 1996;9:2501-7 https://doi.org/10.1183/09031936.96.09122501
  11. Eickelberg O, Kohler E, Reichenberger F, Bertschin S, Woodtli T, Erne P, et al. Extracellular matrix deposition by primary human lung fibroblasts in response to TGF-$\beta1$ and TGF-$\beta3$. Am J Physiol 1999;276:L814-24
  12. Border W, Noble NA. Transforming growth factorbeta in tissue fibrosis. N Engl J Med 1994;331: 1286-92 https://doi.org/10.1056/NEJM199411103311907
  13. Yang J, Liu Y. Dissection of key events in tubular epithelial to myofibroblast transition and its implications in renal interstitial fibrosis. Am J Pathol 2001;159: 1465-75 https://doi.org/10.1016/S0002-9440(10)62533-3
  14. Hu B, Wu Z, Phan SH. Smad3 mediates transforming growth factor-$\beta$-induced $\alpha$-smooth muscle actin ex. pression. Am J Respir Cell Mol Biol 2003;29:397-404 https://doi.org/10.1165/rcmb.2003-0063OC
  15. Li JH, Zhu HJ, Huang XR, Lai KN, Johnson RJ, Lam HY. Smad7 inhibits fibrotic effect of TGF-$\beta$ on renal tubular epithelial cells by blocking smad2 activation. J Am Soc Nephrol 2002;13:1464-72 https://doi.org/10.1097/01.ASN.0000014252.37680.E4
  16. Hartsough MT, Mulder KM. Transforming growth factor beta activation of p44MAPK in proliferating cultures of epithelial cells. J Biol Chem 1995;270: 7117-24 https://doi.org/10.1074/jbc.270.13.7117
  17. Zavadil J, Bitzer M, Liang D, Yang YC, Massimi A, Kneitz S, et al. Genetic programs of epithelial cell plasticity directed by transforming growth factor-beta. Proc Natl Acad Sci U S A 2001;98:6686-91
  18. Ellenrieder V, Hendler SF, Boeck W, Seufferlein T, Menke A, Ruhland C, et al. Transforming growth factor-$\beta1$ treatment leads to an epithelial-mesenchymal transdifferentiation of pancreatic cancer cells requiring extracellular signal-regulated kinase 2 activation. Cancer Res 2001;61:4222-8.
  19. Janda E, Lehmann K, Killisch I, Jechlinger M, Herzig M, Downward J, et al. Ras and TGF-$\beta$ cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathway. J Cell Biol 2002;156:299-313 https://doi.org/10.1083/jcb.200109037
  20. Lafon C, Mathieu C, Guerrin M, Pierre O, Vidal S, Valette A. Transforming growth factor-$\alpha$1-induced apoptosis in human ovarian carcinoma cells: protection by the antioxidant N-acetylcysteine and bcl-2. Cell Growth Differ 1996;7:1095-104
  21. Hong YH, Peng HB, la Fata V, Liao JK. Hydrogen peroxide-mediated transcriptional induction of ma. crophage colony-stimulation factor by TGF-$\beta1$. J Immunol 1997;159:2418-23
  22. Junn E, Lee KN, Ju HR, Han SH, Im JY, Kang HS, et al. Requirement of hydrogen peroxide generation in TGF-$\beta1$ signal transduction in human lung fibr. oblast cells: involvement of hydrogen peroxide and $Ca^{2+}$ in TGF-$\beta1$-induced IL-6 expression. J Immunol 2000;165:2190-7 https://doi.org/10.4049/jimmunol.165.4.2190
  23. Chiu C, Maddock DA, Zhang Q, Souza KP, Townsend AR, Wan Y. TGF-$\beta$-induced p38 activation is mediated by Rac1-regulated generation of reactive oxygen species in cultured human keratinocytes. Int J Mol Med 2001;8:251-5
  24. Herrera B, Alvarez AM, Sanchez A, Fernandez M, Roncero C, Benito M, et al. Reactive oxygen species mediates the mitochondrial-dependent apoptosis in. duced by transforming growth factor-$\beta$ in fetal hep. atocyte. FASEB J 2001;15:741-51 https://doi.org/10.1096/fj.00-0267com
  25. Herrera B, Fernandez M, Roncero C, Ventura JJ, Porras A, Valladares A, et al. Activation of p38MAPK by TGF-$\beta$ in fetal rat hepatocytes requires radical oxygen production, but is dispensable for cell death. FEBS Lett 2001;499:225-9 https://doi.org/10.1016/S0014-5793(01)02554-6
  26. Jiang Z, Seo JY, Ha H, Lee EA, Kim YS, Han DC, et al. Reactive oxygen species mediate TGF-$\beta1$- induced plasminogen activator inhibitor-1 upregulation in mesangial cells. Biochem Biophys Res Commun 2003;309:961-6 https://doi.org/10.1016/j.bbrc.2003.08.102
  27. Lee HB, Yu MR, Yang Y, Jiang Z, Ha H. Reactive oxygen species-regulated signaling in diabetic nephro. pathy. J Am Soc Nephrol 2003;14:S241-5 https://doi.org/10.1097/01.ASN.0000077410.66390.0F
  28. Rhyu DY, Yang Y, Ha H, Lee GT, Song JS, Uh ST, et al. Role of reactive oxygen species in TGF-$\beta$1-$\beta1$ induced MAPK activation and epithelial-mesenchymal transition in renal tubular epithelial cells. J Am Soc Nephrol 2005. (In press)
  29. Hagiwara S, Ishii Y, Kitamura S. Aerosol administration of N-acetylcysteine attenuates lung fibrosis induced by bleomycin in mice. Am J Respir Crit Care Med 2000;162:225-31 https://doi.org/10.1164/ajrccm.162.1.9903129
  30. Ha H, Yu MR, Choi HN, Cha MK, Kang HS, Kim MH, et al. Effects of conventional and new peritoneal dialysis solution on human peritoneal mesothelial cell viability and proliferation. Perit Dial Int 2000; 20:S10-8
  31. Oh JH, Ha H, Yu MR, Lee HB. Sequential effect of high glucose on mesangial cell transforming growth facator-$\beta1$ and fibronectin synthesis. Kidney Int 1998; 54:1872-8 https://doi.org/10.1046/j.1523-1755.1998.00193.x
  32. Thannickal VJ, Day RM, Klinz SG, Bastien MC, Larios JM, Fanburg BL. Ras-dependent and .in. dependent regulation of reactive oxygen species by mitogenic growth factors and TGF$\beta1$. FASEB J 2000;14:1741-8 https://doi.org/10.1096/fj.99-0878com
  33. Larios JM, Budhiraja R, Fanburg BL, Thannickal VJ. Oxidative protein cross-linking reaction involving L-tyrosine in transforming growth factor$\beta$1-stimulated fibroblasts. J Biol Chem 2001;276:17437-41 ? https://doi.org/10.1074/jbc.M100426200
  34. Bottinger EP, Bitzer M. TGF-$\beta$ signaling in renal disease. J Am Soc Nephrol 2002;13:2600-10 https://doi.org/10.1097/01.ASN.0000033611.79556.AE
  35. Hayashida T, deCasestecker M, Schnaper HW. Crosstalk between ERK MAP kinase and Smad-signaling pathways enhances TGF-$\beta$ dependent responses in human mesangial cells. FASEB J 2003;17:1576-8 https://doi.org/10.1096/fj.03-0037fje