Promoter -202 A/C Polymorphism of Insulin-like Growth Factor Binding Protein-3 Gene and Non-small Cell Lung Cancer Risk

인슐린양 성장 인자 결합 단백-3 유전자 -202 좌위의 다형성에 따른 비소세포폐암의 위험도

  • Moon, Jin Wook (Department of Internal Medicine, Yonsei University College of Medicine) ;
  • Chang, Yoon Soo (Department of Internal Medicine, Yonsei University College of Medicine) ;
  • Han, Chang Hoon (Department of Internal Medicine, Yonsei University College of Medicine) ;
  • Kang, Shin Myung (Department of Internal Medicine, Yonsei University College of Medicine) ;
  • Park, Moo Suk (Department of Internal Medicine, Yonsei University College of Medicine) ;
  • Byun, Min Kwang (Department of Internal Medicine, Yonsei University College of Medicine) ;
  • Chung, Wou Young (Department of Internal Medicine, Yonsei University College of Medicine) ;
  • Park, Jae Jun (Department of Internal Medicine, Yonsei University College of Medicine) ;
  • Yoo, Kyeong Nam (Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine) ;
  • Shin, Ju Hye (Cancer Metastasis Research Center, Yonsei University College of Medicine) ;
  • Kim, Young Sam (Department of Internal Medicine, Yonsei University College of Medicine) ;
  • Chang, Joon (Department of Internal Medicine, Yonsei University College of Medicine) ;
  • Kim, Sung Kyu (Department of Internal Medicine, Yonsei University College of Medicine) ;
  • Kim, Hee Jung (Department of Laboratory Medicine, Yonsei University College of Medicine) ;
  • Kim, Se Kyu (Department of Internal Medicine, Yonsei University College of Medicine)
  • 문진욱 (연세대학교 의과대학 내과학교실) ;
  • 장윤수 (연세대학교 의과대학 내과학교실) ;
  • 한창훈 (연세대학교 의과대학 내과학교실) ;
  • 강신명 (연세대학교 의과대학 내과학교실) ;
  • 박무석 (연세대학교 의과대학 내과학교실) ;
  • 변민광 (연세대학교 의과대학 내과학교실) ;
  • 정우영 (연세대학교 의과대학 내과학교실) ;
  • 박재준 (연세대학교 의과대학 내과학교실) ;
  • 유경남 (연세대학교 의과대학 BK21 의과학 사업단) ;
  • 신주혜 (연세대학교 의과대학 암전이 연구센터) ;
  • 김영삼 (연세대학교 의과대학 내과학교실) ;
  • 장준 (연세대학교 의과대학 내과학교실) ;
  • 김성규 (연세대학교 의과대학 내과학교실) ;
  • 김희정 (연세대학교 의과대학 병리학교실) ;
  • 김세규 (연세대학교 의과대학 내과학교실)
  • Received : 2005.01.05
  • Accepted : 2005.03.15
  • Published : 2005.04.30

Abstract

Background : IGFBP-3 inhibits the mitogenic and anti-apoptotic activity of IGF by blocking the binding of IGF to its receptor. However, under certain circumstances, IGFBP-3 can enhance the activity of IGF by protecting IGF from its degradation. More than half of the interindividual variations in IGFBP-3 levels are known to be genetically determined by the polymorphism at -202 locus of IGFBP-3 gene. Method : We attempted to ascertain whether A-202C polymorphic variation of IGFBP-3 gene constitutes a risk factor for non-small cell lung cancer (NSCLC), using PCR-restriction fragment length polymorphism (RFLP). Our study included 104 NSCLC patients and 104 age-, gender-, and smoking status-matched control subjects. Result : In the 104 NSCLC subjects, the genotypic frequencies at the -202 site were as follows: AA = 67 (64.4%), AC = 35 (33.7%), and CC = 2 (1.9%). We did detect significant differences in the genotypic distribution between the NSCLC and the control subjects (p<0.05), and the NSCLC risk correlated significantly with AA genotype at the -202 locus (AA>AC>CC). Using CC genotype as a reference, the odds ratio (OR) for the subjects with AC genotype was 2.60 (95% CI: 0.89 - 8.60), and the OR associated with AA genotype was 5.89 (95% CI: 1.92 - 21.16). Conclusion : These results indicate that the dysregulation of IGF axis should now be considered as another important risk factor for NSCLC, and a potential target for novel antineoplastic therapies and/or preventative strategies in high-risk groups.

인슐린양 성장 인자 결합 단백-3(Insulin-like growth factor (IGF) binding protein-3 (IGFBP-3))는 혈액 내에서 IGF와 결합하여 복합체 혹은 저장소로 작용함으로써, IGF가 수용체에 결합하는 것을 방해하여 IGF의 항세포사멸(antiapoptosis) 및 세포분열 촉진의 기능을 억제한다. 하지만, 특정 상황에서는 도리어 IGFBP-3가 IGF의 파괴를 억제하여 IGF에 의한 암세포의 분화 및 성장을 촉진할 수도 있다는 것이 알려져 있다. 대부분의 환자에서 혈액내 IGFBP-3 수치는 IGFBP-3 유전자의 -202 좌위(locus)의 다형성(polymorphism)에 의해 크게 영향을 받는다. 따라서, 저자 등은 제한 효소(restriction enzyme)를 이용하여 비소세포폐암 환자의 IGFBP-3 유전자 -202 좌위의 다형성을 분석함으로써, 이 좌위의 다형성이 비소세포폐암의 위험도와 연관되어 있는지 조사하였다. 본 연구는 104명의 비소세포폐암 환자군과, 연령, 성별, 흡연력이 비슷한 104명의 대조군을 비교 분석하였다. 대조군에서 -202 좌위 유전자 다형성의 빈도는 AA형 48명 (46.2%), AC형 45명 (43.3%), CC형 11명 (10.5%)이었고, 비소세포폐암 환자군에서 -202 좌위 유전자 다형성의 빈도는 AA형 67명(64.4%), AC형 35명 (33.7%), CC형 2명 (1.9%)이었다. -202 좌위의 유전자 다형성에 있어서 대조군과 비소세포폐암 환자군 사이에 유의한 빈도 차이가 있었으며 (p < 0.05, Pearson's ${\chi}^2-test$), 비소세포폐암의 위험도는 -202 좌위의 AA형에서 가장 높고 CC형에서 가장 낮았다. CC형을 기준으로 하면 AC형의 비교 위험도는 2.60 (95% 신뢰구간: 0.89 - 8.60)이었으며 AA형의 비교 위험도는 5.89 (95% 신뢰구간: 1.92 - 21.16)이었다. 본 연구 결과는, IGFBP-3 유전자의 -202 좌위(locus)의 다형성(polymorphism)이 비소세포폐암의 위험인자 중의 하나일 가능성을 제시하며, 따라서 비소세포폐암에 대한 항암치료 개발에 있어서 새로운 표적이 될 가능성을 시사한다.

Keywords

References

  1. Stewart CE, Rotwein P. Growth, differentiation, and survival: multiple physiological functions for insulinlike growth factors. Physiol Rev 1996;76:1005-26 https://doi.org/10.1152/physrev.1996.76.4.1005
  2. Macauly VM. Insulin-like growth factors and cancer. Br J Cancer 1992;65:311-20 https://doi.org/10.1038/bjc.1992.65
  3. Jones JI, Clemmons DR. Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev 1995;16:3-34
  4. Dunn SE, Hardman RA, Kari FW, Barrett JC. Insulin-like growth factor 1 (IGF-1) alters drug sensitivity of HBL 100 human breast cancer cells by inhibition of apoptosis induced by diverse anticancer drugs. Cancer Res 1997;57:2687-93
  5. Parrizas M, LeRoith D. Insulin-like growth factor-1 inhibition of apoptosis is associated with increased expression of the bcl-xL gene product. Endocrinology 1997;138:1355-8 https://doi.org/10.1210/en.138.3.1355
  6. Prager D, Li HL, Asa S, Melmed S. Dominant negative inhibition of tumorigenesis in vivo by human insulin-like growth factor I receptor mutant. Proc Natl Acad Sci U S A 1994;91:2181-5
  7. Gucev ZS, Oh Y, Kelley KM, Rosenfeld RG. Insulinlike growth factor binding protein 3 mediates retinoic acid- and transforming growth factor beta2-induced growth inhibition in human breast cancer cells. Cancer Res 1996;56:1545-50
  8. Adamo ML, Shao ZM, Lanau F, Chen JC, Clemmons DR, Roberts CT Jr, et al. Insulin-like growth factor-I (IGF-I) and retinoic acid modulation of IGF-binding proteins (IGFBPs): IGFBP-2, -3, and -4 gene expression and protein secretion in a breast cancer cell line. Endocrinology 1992;131:1858-66 https://doi.org/10.1210/en.131.4.1858
  9. Buckbinder L, Talbott R, Velasco-Miguel S, Takenaka I, Faha B, Seizinger BR, et al. Induction of the growth inhibitor IGF-binding protein 3 by p53. Nature 1995;377:646-9 https://doi.org/10.1038/377646a0
  10. Werner H, Karnieli E, Rauscher FJ, LeRoith D. Wildtype and mutant p53 differentially regulate transcription of the insulin-like growth factor I receptor gene. Proc Natl Acad Sci U S A 1996;93:8318-23
  11. Oh Y, Muller HL, Ng L, Rosenfeld RG. Transforming growth factor-beta-induced cell growth inhibition in human breast cancer cells is mediated through insulin-like growth factor-binding protein-3 action. J Biol Chem 1995;270:13589-92 https://doi.org/10.1074/jbc.270.23.13589
  12. Huynh H, PollakM, Zhang JC. Regulation of insulinlike growth factor (IGF) II and IGF binding protein-3 autocrine loop in human PC-3 prostate cancer cells by vitamin D metabolite $1.25(OH)_2D3$ and its analog EB1089. Int J Oncol 1998;13:137-43
  13. Huynh H, Nickerson T, PollakM, Yang X. Regulation of insulin-like growth factor I receptor expression by the pure antiestrogen ICI 182780. Clin Cancer Res 1996;2:2037-42
  14. Nickerson T, Pollak M. Bicalutamide (Casodex)-induced prostate regression involves increased expression of genes encoding insulin-like growth factor binding proteins. Urology 1999;54:1120-5 https://doi.org/10.1016/S0090-4295(99)00421-5
  15. Rozen F, Zhang J, Pollak M. Antiproliferative action of tumor necrosis factor-alpha on MCF-7 breast cancer cells is associated with increased insulin-like growth factor binding protein-3 accumulation. Int J Oncol 1998;13:865-9
  16. Walker GE, Wilson EM, Powell D, Oh Y. Butyrate, a histone deacetylase inhibitor, activates the human IGF binding protein-3 promoter in breast cancer cells: molecular mechanism involves an Sp1/Sp3 multiprotein complex. Endocrinology 2001;142:3817-27 https://doi.org/10.1210/en.142.9.3817
  17. Chang YS, Wang L, Liu D, Mao L, Hong WK, Khuri FR, et al. Correlation between insulin-like growth factor-binding protein-3 promoter methylation and prognosis of patients with stage I non-small cell lung cancer. Clin Cancer Res 2002;8:3669-75
  18. Cohen P, Graves HC, Peehl DM, Kamarei M, Guidice LC, Rosenfeld RG. Prostate-specific antigen (PSA) is an insulin-like growth factor binding protein-3 protease found in seminal plasma. J Clin Endocrinol Metab 1992;75:1046-53 https://doi.org/10.1210/jc.75.4.1046
  19. Conover CA, de Leon DD. Acid-activated insulin-like growth factor-binding protein-3 proteolysis in normal and transformed cells: role of cathepsin D. J Biol Chem 1994;269:7076-80
  20. Kao PC, Matheny AP Jr, Lang CA. Insulin-like growth factor-I comparisons in healthy twin children. J Clin Endocrinol Metab 1994;78:310-2 https://doi.org/10.1210/jc.78.2.310
  21. Deal C, Ma J, Wilkin F, Paquette J, Rozen F, Ge B, et al. Novel promoter polymorphism in insulin-like growth factor-binding protein-3: correlation with serum levels and interaction with known regulators. J Clin Endocrinol Metab 2001;86:1274-80 https://doi.org/10.1210/jc.86.3.1274
  22. Harrela M, Koistinen H, Kaprio J, Lehtovirta M, Tuomilehto J, Eriksson J, et al. Genetic and envir- onmental components of interindividual variation in circulating levels of IGF-I, IGF-II, IGFBP-1, and IGFBP-3. J Clin Invest 1996;98:2612-5 https://doi.org/10.1172/JCI119081
  23. Schernhammer ES, Hankinson SE, Hunter DJ, Blouin MJ, Pollak MN. Polymorphic variation at the -202 locus in IGFBP3: influence on serum levels of insulin-like growth factors, interaction with plasma retinol and vitamin D and breast cancer risk. Int J Cancer 2003;107:60-4 https://doi.org/10.1002/ijc.11358
  24. Chan JM, Stampfer MJ, Giovannucci E, Gann PH, Ma J, Wilkinson P, et al. Plasma insulin-like growth factor-I and prostate cancer risk: a prospective study. Science 1998;279:563-6 https://doi.org/10.1126/science.279.5350.563
  25. Hankinson SE, Willett WC, Colditz GA, Hunter DJ, Michaud DS, Deroo B, et al. Circulating concentrations of insulin-like growth factor-I and risk of breast cancer. Lancet 1998;351:1393-6 https://doi.org/10.1016/S0140-6736(97)10384-1
  26. Fletcher O, Gibson L, Johnson N, Altmann DR, Holly JM, Ashworth A, et al. Polymorphisms and circulating levels in the insulin-like growth factor system and risk of breast cancer: a systematic review. Cancer Epidemiol Biomarkers Prev 2005;14:2-19
  27. Ren Z, Cai Q, Shu XO, Cai H, Li C, Yu H, et al. Genetic polymorphisms in the IGFBP3 gene: association with breast cancer risk and blood IGFBP-3 protein levels among Chinese women. Cancer Epidemiol Biomarkers Prev 2004;13:1290-5
  28. Ma J, Pollak MN, Giovannucci E, Chan JM, Tao Y, Hennekens CH, et al. Prospetive study of colorectal cancer risk in men and plasma levels of insulin-like growth factor(IGF)-1 and IGF-binding protein-3. J Natl Cancer Inst 1999;91:620-5 https://doi.org/10.1093/jnci/91.7.620
  29. Yu H, Spitz MR, Mistry J, Gu J, Hong WK, Wu X. Plasma levels of insulin-like growth factor-I and lung cancer risk: a case-control analysis. J Natl Cancer Inst 1999;91:151-6 https://doi.org/10.1093/jnci/91.2.151
  30. Wang L, Habuchi T, Tsuchiya N, Mitsumori K, Ohyama C, Sato K, et al. Insulin-like growth factor-binding protein-3 gene -202 A/C polymorphism is correlated with advanced disease status in prostate cancer. Cancer Res 2003;63:4407-11
  31. Chen JC, Shao ZM, Sheikh MS, Hussain A, LeRoith D, Roberts CT Jr, et al. Insulin-like growth factorbinding protein enhancement of insulin-like growth factor-I (IGF-I)-mediated DNA synthesis and IGF-I binding in a human breast carcinoma cell line. J Cell Physiol 1994;158:69-78 https://doi.org/10.1002/jcp.1041580110
  32. de Mellow JS, Baxter RC. Growth hormone-dependent insulin-like growth factor (IGF) binding protein both inhibits and potentiates IGF-I-stimulated DNA synthesis in human skin fibroblasts. Biochem Biophys Res Commun 1988;156:199-204 https://doi.org/10.1016/S0006-291X(88)80824-6
  33. Pratt SE, Pollak MN. Insulin-like growth factor binding protein 3 (IGF-BP3) inhibits estrogen-stimulated breast cancer cell proliferation. Biochem Biophys Res Commun 1994;198:292-7 https://doi.org/10.1006/bbrc.1994.1041
  34. Watanabe T, Itokawa M, Nakagawa Y, Iguchi T, Katagiri T. Increased levels of insulin-like growth factor binding protein-3 in hypertensive patients with carotid atherosclerosis. Am J Hypertens 2003;16:754-60 https://doi.org/10.1016/S0895-7061(03)00985-3
  35. Lee WL, Chen JW, Ting CT, Lin SJ, Wang PH. Changes of the insulin-like growth factor I system during acute myocardial infarction: implications on left ventricular remodeling. J Clin Endocrinol Metab 1999;84:1575–81
  36. Spagnoli A, Chiarelli F, Vorwerk P, Boscherini B, Rosenfeld RG. Evaluation of the components of insulin-like growth factor (IGF)-IGF binding protein (IGFBP) system in adolescents with type 1 diabetes and persistent microalbuminuria: relationship with increased urinary excretion of IGFBP-3 18kD N-terminal fragment. Clin Endocrinol 1999;51:587-96 https://doi.org/10.1046/j.1365-2265.1999.00842.x
  37. Brosius FC 3rd. Trophic factors and cytokines in early diabetic glomerulopathy. Exp Diabesity Res 2003;4:225-33 https://doi.org/10.1155/EDR.2003.225
  38. Shinada M, Akdeniz A, Panagiotopoulos S, Jerums G, Bach LA. Proteolysis of insulin-like growth factor-binding protein-3 is increased in urine from patients with diabetic nephropathy. J Clin Endocrinol Metab 2000;85:1163-9 https://doi.org/10.1210/jc.85.3.1163