The Proportion of Rifabutin-susceptible Strains among Rifampicin-resistant Isolates and Its Specific rpoB Mutations

한국에서 분리된 리팜핀 내성 균주에서의 리파부틴 감수성 정도 및 관련 rpoB 유전자 돌연변이의 특성에 관한 연구

  • Lew, Woo Jin (Korean Institute of Tuberculosis, Korean National Tuberculosis Association) ;
  • Park, Young Kil (Korean Institute of Tuberculosis, Korean National Tuberculosis Association) ;
  • Kim, Hee Jin (Korean Institute of Tuberculosis, Korean National Tuberculosis Association) ;
  • Chang, Chulhun (Korean Institute of Tuberculosis, Korean National Tuberculosis Association) ;
  • Bai, Gill Han (Korean Institute of Tuberculosis, Korean National Tuberculosis Association) ;
  • Kim, Sung Kyu (Korean Institute of Tuberculosis, Korean National Tuberculosis Association)
  • 류우진 (대한결핵협회 결핵연구원) ;
  • 박영길 (대한결핵협회 결핵연구원) ;
  • 김희진 (대한결핵협회 결핵연구원) ;
  • 장철훈 (대한결핵협회 결핵연구원) ;
  • 배길한 (대한결핵협회 결핵연구원) ;
  • 김성규 (대한결핵협회 결핵연구원)
  • Received : 2005.06.09
  • Accepted : 2005.08.19
  • Published : 2005.09.30

Abstract

Background : Rifabutin (ansamycin) is a spiro-piperidyl rifamycin, which is highly active against Mycobacterium tuberculosis. It has been found that some clinical isolates of tubercle bacilli that are resistant to rifampicin are susceptible to rifabutin, with some patients with multi-drug resistant pulmonary tuberculosis having shown favorable clinical and bacteriological responses to the rifabutin. This study was conducted to find the proportion of rifabutin-susceptible strains among rifampicin-resistant isolates from Korean MDR-TB patients, and investigate the presence of specific rpoB mutations, which may confer resistance to rifampicin, but not to rifabutin. Methods : 201 rifampicin-resistant and 50 pan-susceptible M. tuberculosis isolates were randomly selected for this study. The isolates were retested at rifampicin and rifabutin concentrations of 0, 20, 40 and $80{\mu}g/ml$, respectively. The isolates that grew at and/or over a rifabutin concentration of $20{\mu}g/ml$ were judged rifabutin-resistant. The rpoB gene was extracted from the isolates, and then amplified for direct sequencing to investigate specific rpoB mutations that conferred rifabutin- susceptibility but rifampicin-resistance. Results : Out of the 201 rifampicin-resistant M. tuberculosis, 41 strains (20.4%) were susceptible to rifabutin using the absolute concentration method on Lowenstein-Jensen media. The rpoB mutation types that showed susceptibility to rifabutin were Leu511Pro, Ser512Arg, Gln513Glu, Asp516Ala, Asp516Gly, Asp516Val, Asp516Tyr, Ser522Leu, His526Asn, His526Leu, His526Cys, Arg529Pro and Leu533Pro. A reverse hybridization technique was able to detect 92.5% of the rifabutin-susceptible isolates, with a specificity of 96.1% among 195 M. tuberculosis isolates with the rpoB mutation. Conclusions : Around 20% of the rifampicin-resistant isolates in Korea showed susceptibility to rifabutin, which was associated with some specific mutations of rpoB. Rifabutin could be used for the treatment of MDR-TB patients, especially when drug susceptibility testing reveals susceptibility to rifabutin.

연구 배경 : 리팜핀 내성 균주에서 리파부틴 약제의 교차 내성정도와 리팜핀 내성-리파부틴 감수성 결핵균의 rpoB 유전자 돌연변이의 특성을 알아보고자 연구를 실시하였다. 연구 방법 : 감수성검사에서 리팜핀에 내성인 균주를 선정하여 리파부틴 농도 $0-80{\mu}g/ml$ 농도로 재접종하여 감수성 여부를 확인하였다. 리팜핀-내성균주 모두 염기서열 분석을 통하여 리파부틴 감수성과의 관계를 조사하였다. 역교잡 방법으로 리파부틴 감수성균을 구별하였다. 연구 결과 : 우리나라에서 분리된 리팜핀 내성인 201균주 중에서 41균주(20.4%)는 리파부틴에 감수성을 보였다. 리파부틴 감수성을 보이는 rpoB 유전자 돌연변이는 Leu511Pro, Ser512Arg, Gln513Glu, Asp516Ala, Asp516Gly, Asp516Val, Asp516Tyr, Ser522Leu, His526Asn, His526Leu, His526Cys, Arg529Pro, Leu533Pro 등 이었다. 역교잡 방법을 이용하였을 경우 rpoB 돌연변이를 가진 균주 중에서 리파부틴 감수성균의 민감도는 92.5%이었고, 특이도는 96.1%이었다. 결 론 : 리팜핀 내성균이라도 약 20.4% (95% 신뢰구간: 14.8% to 26.0%)가 리파부틴 약제에 감수성이므로, 우리나라의 다제내성 결핵환자의 치료에서도 리파부틴이 중요한 약제로서 역할을 할 수 있음이 밝혀졌다. 향후 다제내성 결핵 환자에서의 리파부틴의 치료 효과에 대한 임상적 연구가 필요하다.

Keywords

References

  1. Telenti A, Imboden P, Marchesi F, Lowrie D, Cole ST, Colston MJ, et al. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet 1993; 341:647-50 https://doi.org/10.1016/0140-6736(93)90417-F
  2. Michison DA, Nunn AJ. Influence of initial drug resiꠀ stance on the response to short-course chemotherapy in pulmonary tuberculosis. Am Rev Respir Dis 1986; 133:423-30
  3. McGregor MM, Olliaro P, Wolmarans L, Mabuza B, Bredell M, Felten MK, et al. Efficacy and safety of rifabutin in the treatment of patients with newly diagnosed pulmonary tuberculosis. Am J Respir Crit Care Med 1996;154:1462-7
  4. Telenti A. Genetics of drug resistance in tuberculosis. In: Iseman MD, Huitt GA, editors. Clinics in chest medicine. Philadelphia: WB Saunders; 1997. p. 55-64
  5. Dickinson JM, Mitchison DA. In vitro activity of new rifamycins against rifampicin-resistant M. tuberculoꠀ sis and MAIS-complex mycobacteria. Tubercle 1987; 68:177-82 https://doi.org/10.1016/0041-3879(87)90053-5
  6. Hong Kong Chest Service/British Medical Research Council. A controlled study of rifabutin and an uncoꠀ ntrolled study of ofloxacin in the retreatment of paꠀ tients with pulmonary tuberculosis resistant to isoꠀ niazid, streptomycin and rifampicin. Tuberc Lung Dis 1992;73:59-67 https://doi.org/10.1016/0962-8479(92)90081-T
  7. Blumberg HM, Buman WJ, Chaisson RE, Daley CL, Etkind SC, Friedman LN, et al. American Thoracic Society/Centers for Disease Control and Prevention/ Infectious Diseases Society of America: treatment of tuberculosis. Am J Respir Crit Care Med 2003;167: 603-62 https://doi.org/10.1164/rccm.167.4.603
  8. Kim SJ, Bai GH, Hong YP. Drug resistant tuberculosis in Korea, 1994. Int J Tuberc Lung Dis 1997;1:302-8
  9. Kox LF, van Leeuwen J, Knijper S, Jansen HM, Kolk AH. PCR assay based on DNA coding for 16S rRNA for detection and identification of mycobacteria in cliꠀ nical samples. J Clin Microbiol 1995;33:3225-33
  10. Nolan CM, Williams DL, Cave MD, Eisenach KD, el- Hajj H, Hooton TM, et al. Evolution of rifampin resistance in human immunodeficiency virus-associated tuberculosis. Am J Respir Crit Care Med 1995;152: 1067-71
  11. Goble M, Iseman D, Madsen LA, Watite D, Ackerson L, Horsburgh CR Jr. Treatment of 171 patients with pulmonary tuberculosis resistant to isoniazid and rifampin. N Engl J Med 1993;328:527-32 https://doi.org/10.1056/NEJM199302253280802
  12. Grassi C, Peona V. Use of rifabutin in the treatment of pulmonary tuberculosis. Clin Infect Dis 1996;22 (Suppl 1):S50-4
  13. Dickinson JM, Mitchison DA. In vitro activity of new rifamycin against rifampicin-resistant M. tuberculosis and MAIS-complex mycobacteria. Tubercle 1987; 68:177-82 https://doi.org/10.1016/0041-3879(87)90053-5
  14. Yang B, Koga H, Ohno H, Ogawa K, Fukuda M, Hirakata Y, et al. Relationship between antimycobacterial activities of rifampicin, rifabutin and KRM-1648 and rpoB mutations of Mycobacterium tuberculosis. J Antimicro Chemother 1998;42:621-8 https://doi.org/10.1093/jac/42.5.621
  15. Williams DL, Spring L, Collins L, Miller LP, Heifets LB, Gangadharam PR, et al. Contribution of rpoB mutation to development of rifamycin cross-resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 1998;42:1853-7
  16. Cavusoglu C, Karaca-Derici Y, Bilgic A. In-vitro activity of rifabutin against rifampicin-resistant Mycobacterium tuberculosis isolates with known rpoB mutations. Clin Microbiol Infect 2004;10:662-5 https://doi.org/10.1111/j.1469-0691.2004.00917.x
  17. Yuen LK, Leslie D, Coloe PJ. Bacteriological and molecular analysis of rifampin-resistant Mycobacterium tuberculosis strains isolated in Australia. J Clin Microbiol 1999;37:3844-50
  18. Bodmer T, Zurcher G, Imboden P, Telenti A. Mutation position and type of substitution in the ${\beta}$-subunit of the RNA polymerase influence in-vitro activity of rifamycins in rifampicin-resistant Mycobacterium tuberculosis. J Antimicrob Chemother 1995;35:345-8 https://doi.org/10.1093/jac/35.2.345
  19. Moghazeh SL, Pan X, Arain T, Stover CK, Musser JM, Kreiswirth BN. Comparative antimycobacterial activities of rifampin, rifapentine, and KRM-1648 against a collection of rifampin-resistant Mycobacterium tuberculosis isolates with known rpoB mutations. Antimicrob Agents Chemother 1996;40:2655-7