CS 가스 흡입이 흰쥐의 폐포막내 Laminin-1에 미치는 영향

Expressions of Laminin-1 in Lung Alveolar Septa after CS gas Exposure in Rats

  • 전순호 (한양대학교구리병원 흉부외과교실) ;
  • 백두진 (한양대학교 의과대학 해부학교실) ;
  • 이철범 (한양대학교구리병원 흉부외과교실) ;
  • 김혁 (한양대학교구리병원 흉부외과교실) ;
  • 정원상 (한양대학교구리병원 흉부외과교실) ;
  • 김영학 (한양대학교구리병원 흉부외과교실) ;
  • 강정호 (한양대학교구리병원 흉부외과교실) ;
  • 지행옥 (한양대학교구리병원 흉부외과교실)
  • Chon, Soon-Ho (Department of Thoracic and Cardiovascular Surgery, College of Medicine, Hanyang University) ;
  • Paik, Doo-Jin (Department of Anatomy and Cell Biology, College of Medicine, Hanyang University) ;
  • Lee, Chul Burm (Department of Thoracic and Cardiovascular Surgery, College of Medicine, Hanyang University) ;
  • Kim, Hyuck (Department of Thoracic and Cardiovascular Surgery, College of Medicine, Hanyang University) ;
  • Chung, Won Sang (Department of Thoracic and Cardiovascular Surgery, College of Medicine, Hanyang University) ;
  • Kim, Young Hak (Department of Thoracic and Cardiovascular Surgery, College of Medicine, Hanyang University) ;
  • Kang, Jung Ho (Department of Thoracic and Cardiovascular Surgery, College of Medicine, Hanyang University) ;
  • Jee, Heng Ok (Department of Thoracic and Cardiovascular Surgery, College of Medicine, Hanyang University)
  • 투고 : 2005.07.20
  • 심사 : 2005.09.06
  • 발행 : 2005.10.30

초록

배 경 : Laminin은 생체조직의 세포외기질에 함유되어 있는 당단백질로 특히 기저막내에 특이적으로 분포되어 있다. 저자들은 군중집회 해산용으로 혹은 군사용으로 널리 사용되고 있는 CS 가스(ortho-chlorobenzylidine malononitrile)가 폭로되었을 때 흰쥐의 폐조직내 laminin에 미치는 영향을 밝히고자 하였다. 대상 및 방법 : 본 실험에 사용한 실험동물은 청정동물실에서 사육한 생후 21일령의 흰쥐 (Sprague-Dawley계) 35마리를 사용하였다. 실험동물은 대조군에 5마리, 실험군에 30마리를 배정하였다. CS 가스에 폭로 후 흰쥐를 12시간, 1일, 2일, 3일, 5일 및 7일 경과후 희생시켜 폐장을 절취하여 면역조직염색 및 면역도금법을 시행하였다. 결 과 : 상기와 같이 조직면역반응과 염색을 시행한 후 조직을 관찰하여 다음과 같은 결과를 얻었다. CS 가스 투여후 2일 경과군의 흰쥐 폐포막에는 림파구, 단핵구등이 침투되기 시작하여 3일 경과군에서는 강도의 염증조직이 관찰되었다. 대조군과 CS 가스 투여 12시간군의 폐장의 제2형폐포세포내에 금과립은 층상체주위와 외형질에서 소수 관찰되었다. 결 론 : 이상과 같은 결과로 흰쥐에 CS 가스를 계속 3일간 투여했을 경우 폐포에서 염증조 직이 형성되고 이때 기저막내 laminin의 분포는 일시 감소되나 염증조직의 소멸과 함께 다시 증가되는 것을 보아 laminin이 조직재형성에의 역할이 흰쥐 폐포에서도 일어나고 있음을 알 수 있었고, 면역금과립방법을 이용한 전자현미경 검사에서 제2형폐포세포내 laminin의 분포도 증명할 수 있었다.

Background : Laminin-1 is known to have regular functions in the development and course of differentiation of the lungs. The morphogenesis and distribution of laminin-1 still remains as a mystery and its distribution and changes in the molecular structure of laminin-1 in the pathogenesis of the lung still is a subject of great controversy. In this study, experiments were done to delineate the distribution and changes in the amount of laminin-1 after inducing inflammation of the lungs by exposing experimental animals to CS gas and especially, to find compositions of laminin-1 within type II pneumocytes. Materials and Methods : The experimental subjects of study were newborn rats and the extracted tissue from the experimental rats were viewed under light microscope and electron microscope after the sections were treated with immunohistochemical methods and immunogold reaction methods using bounded gold particles. Results : 1) Lymphocytes and mononuclear phagocytes invaded the alveolar septa in the 2 day group rats after CS gas exposure and intense interstitial inflammation was seen in the 3 day group. 2) Laminin immunoreactions decreased to a moderate degree in the 2 and 3 day group rats after CS gas exposure and strong laminin immunoreactions were seen again in the 5 and 7 day group rats. 3) Gold particles in basal lamina of the lung blood-air barrier decreased and in the type I pneumocytes decreased in the 2 and 3 day group rats after CS gas exposure. 4) Gold particles were seen only on the surface of the cell membranes of type II pneumocytes of the 1 and 2 day group rats after CS gas exposure. 5) Few gold particles around the lamellar bodies and cytoplasm of type II pneumocytes in the control rat group and at 12 hours after CS gas exposure. Gold particles are seen only on the surface of type II pneumocytes of the 1 and 2 day group rats after CS gas exposure and are evenly distributed in small amounts in the cells of the 3 day group after CS gas exposure. Conclusion : CS gas exposure in the rats caused inflammation of lung alveolar septa and also induced a decrease in laminin-1 in basal lamina and loss of laminin-1 in the cytoplasm of type II pneumonocytes. As the inflammatory cells disappeared, an increase in the distribution of laminin-1 occurred. This reflects tissue regeneration functions of laminin-1 in the pneumocytes of rats and the distribution of laminin-1 in type II pneumocytes can be seen through the electron microscope using immunogold methods.

키워드

참고문헌

  1. Adamson IY, Bowden DH. The type II cell as progenitor of alveolar epithelial regeneration: a cytodynamic study in mice after exposure to oxygen. Lab Invest 1974;30:35-42
  2. Martin GR, Timpl R, Kuhn K. Basement membrane proteins: molecular structure and function. Adv Protein Chem 1988;39:1-50 https://doi.org/10.1016/S0065-3233(08)60374-5
  3. Kleinman HK, Schnaper HW. Basement membrane matrices in tissue development. Am J Respir Cell Mol Biol 1993;8:238-9 https://doi.org/10.1165/ajrcmb/8.3.238
  4. Engel J., Odermatt E, Engel A, Madri JA, Furthmayr H, Rohde H, et al. Shapes, domain organization and flexibility of laminin and fibronectin, two multifunctional proteins of the extracellular matrix. J Mol Biol 1981;150:97-120 https://doi.org/10.1016/0022-2836(81)90326-0
  5. Beck K, Hunter I, Engel J. Structure and function of laminin: anatomy of a multidomain glycoprotein. FASEB J 1990;4:148-60
  6. Timpl R, Rohde H, Robey PG, Rennard SI, Foidart JM, Martin GR. Laminin: a glycoprotein from basement membranes. J Biol Chem 1979;254:9933-7
  7. Peters BP, Hartle RJ, Krzesicki RF, Kroll TG, Perini F, Balun JE, et al. The biosynthesis, processing and secretion of laminin by human choriocarcinoma cells. J Biol Chem 1985;260:14732-42
  8. Hoffman MP, Nomizu M, Roque E, Lee S, Jung DW, Yamada Y, et al. Laminin-1 and laminin-2 G-domain synthetic peptides bind syndecan-1 and are involved in acinar formation of a human submandibular gland cell line. J Biol Chem 1998;273:28633-41 https://doi.org/10.1074/jbc.273.44.28633
  9. Leivo I, Engvall E, Laurila P, Miettinen M. Distribution of merosin, a laminin-related tissue-specific basement membrane protein, in human Schwann cell neoplasms. Lab Invest 1989;61:426-32
  10. Leivo I, Laurila P, Walstrom T, Engvall E. Expression of merosin, a tissue-specific basement membrane protein, in the intermediate trophoblast cells of choriocarcinoma and placenta. Lab Invest 1989;60:783-90
  11. Pyke C, Salo S, Ralfkiaer E, Romer J, Dano K, Tryggvasson K. Laminin-5 is a marker of invading cancer cells in some human carcinomas and is coexpressed with the receptor for urokinase plasminogen activator in budding cancer cells in colon adenocarcinomas. Cancer Res 1995;55:4132-9
  12. Kosmehl H, Berndt A, Katenkamp D, Mandel U, Bohle R, Gabler U, et al. Differential expression of fibronectin splice variants, oncofetal glycosylated fibronectin and laminin isoforms in nodular palmar fibromatosis. Pathol Res Pract 1995;191:1105-13 https://doi.org/10.1016/S0344-0338(11)80655-2
  13. Damjanov I. Heterogeneity of basement membranes in normal and pathologically altered tissues. Virchows Arch A Pathol Anat Histopathol 1990;416:185-8 https://doi.org/10.1007/BF01678976
  14. Janes GR, Israel MS. Mechanism of toxicity of injected CS gas. Nature 1970;228:1315-7 https://doi.org/10.1038/2281315a0
  15. Ekblom P, Lonai P, Talts JF. Expression and biological role of laminin-1. Matrix Biol 2003;22:35-47 https://doi.org/10.1016/S0945-053X(03)00015-5
  16. Testa JR, Bellacosa A. AKT plays a central role in tumorigenesis. Proc Natl Acad Sci U S A 2001;98: 10983-5
  17. Kosmehl H, Berndt A, Katenkamp D. Molecular variants of fibronectin and laminin: structure, physiological occurrence and histopathological aspects. Virchows Arch 1996;429:311-22
  18. Rannels SR, Yarnell JA, Fisher CS, Fabisiak JP, Rannels DE. Role of laminin in maintenance of type II pneumonocyte morphology and function. Am J Physiol 1987;253:C835-45
  19. Kleinman HK, Cannon FB, Laurie GW, Hassell JR, Aumailley M, Terranova VP, et al. Biological activities of laminin. J Cell Biochem 1985;27:317-25 https://doi.org/10.1002/jcb.240270402
  20. Wicha MS, Lowrie G, Kohn E Bagavndoss P, Mahn T. Extracellular matrix promotes mannary epithelial growth and differentiation in vitro. Proc Natl Acad Sci U S A 1982;79:3213-7
  21. Durham PL, Snyder JM. Characterization of ${\alpha}1$, ${beta}1$, ${\gamma}1$ laminin subunits during rabbit fetal lung development. Dev Dyn 1995;203:408-21 https://doi.org/10.1002/aja.1002030404
  22. Klein G, Ekblom M, Fecker L, Timpl R, Ekblom P. Differential expression of laminin A and B chains during development of embryonic mouse organs. Development 1990;110:823-37
  23. Schuger L, Varini J, Kellen PD, Skubitz AP, Gillbride K. Laminin expression in the mouse lung increases with development and stimulates spontaneous organotypid rearrangement of mixed lung cells. Dev Dyn 1992;195:43-54 https://doi.org/10.1002/aja.1001950105
  24. Schuger L, O'Shea S, Rheinheimer J, Varani J. Laminin in lung development: effects of anti-laminin antibody in murin lung morphogenesis. Dev Biol 1990;137:26-32 https://doi.org/10.1016/0012-1606(90)90004-3