Manassantin A and B Isolated from Saururus chinensis Inhibit $TNF-{\alpha}-Induced$ Cell Adhesion Molecule Expression of Human Umbilical Vein Endothelial Cells

  • Kwon Oh Eok (Laboratory of Lipid Metabolism, Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee Hyun Sun (Laboratory of Lipid Metabolism, Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee Seung Woong (Laboratory of Lipid Metabolism, Korea Research Institute of Bioscience and Biotechnology) ;
  • Chung Mi Yeon (Laboratory of Lipid Metabolism, Korea Research Institute of Bioscience and Biotechnology) ;
  • Bae Ki Hwan (College of Pharmacy, Chungnam National University) ;
  • Rho Mun-Chual (Laboratory of Lipid Metabolism, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim Young-kook (Laboratory of Lipid Metabolism, Korea Research Institute of Bioscience and Biotechnology)
  • Published : 2005.01.01

Abstract

Leukocyte adhesion to the vascular endothelium is a critical initiating step in inflammation and atherosclerosis. We have herein studied the effect of manassantin A (1) and S (2), dineolignans, on interaction of THP-1 monocytic cells and human umbilical vein endothelial cells (HUVEC) and expression of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin in HUVEC. When HUVEC were pretreated with 1 and 2 followed by stimulation with $TNF-{\alpha}$, adhesion of THP-1 cells to HUVEC decreased in dose-dependent manner with $IC_{50}$ values of 5 ng/mL and 7 ng/mL, respectively, without cytotoxicity. Also, 1 and 2 inhibited $TNF-{\alpha}-induceda$ up-regulation of ICAM-1, VCAM-1 and E-selectin. The present findings suggest that 1 and 2 prevent monocyte adhesion to HUVEC through the inhibition of ICAM-1, VCAM-1 and E-selectin expression stimulated by $TNF-\alpha$, and may imply their usefulness for the prevention of atherosclerosis relevant to endothelial activation.

Keywords

References

  1. Berk, B. C., Abe, J. I., Min, W., Surapisitchat, J., and Yan, C., Endothelial atheroprotective and anti-inflammatory mechanisms. Ann. N. Y. Acad. Sci., 947, 93-111 (2001) https://doi.org/10.1111/j.1749-6632.2001.tb03932.x
  2. Bevilacqua, M. P., Endothelial-leukocyte adhesion molecules. Annu. Rev. Immunol., 11, 767-804 (1993) https://doi.org/10.1146/annurev.iy.11.040193.004003
  3. Bevilacqua, M. P., Nelson, R. M., Mannori, G., and Cecconi, O., Endothelial-leuckocyte adhesion molecules in human disease. Annu. Rev. Med., 45, 361-378 (1994) https://doi.org/10.1146/annurev.med.45.1.361
  4. Chen, Y. -H., Lin, S. -J., Ku, H. -H., Shiao, M. -S., Lin, F. -Y., Chen, J. -W., and Chen, Y. -L., Salvianolic acid B attenuates VCAM-1 and ICAM-1 expression in TNF-${\alpha}$-treated human aortic endothelial cells. J. Cell Biochem., 82, 512-521 (2001) https://doi.org/10.1002/jcb.1176
  5. Cybulsky, M. I., and Gimbrone, M. A. Jr., Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science, 251, 788-791 (1991) https://doi.org/10.1126/science.1990440
  6. Hwang, B. Y., Lee, J. -H., Nam, J. B., Hong, Y. -S., and Lee, J. J., Lignans from Saururus chinensis inhibiting the transcription factor NF-${\kappa}$B. Phytochemistry, 64, 765-771 (2003) https://doi.org/10.1016/S0031-9422(03)00391-1
  7. Imhof, B. A. and Dunon, D., Leukocyte migration and adhesion. Adv. Immunol., 58, 345-416 (1995) https://doi.org/10.1016/S0065-2776(08)60623-9
  8. Kraft, C., Jenett-Siems, K., Kohler, I., Tofern-Reblin, B., Siems, K., Bienzle, U., and Eich, E., Antiplasmodial activity of sesquilignans and sesquineolignans from Bonamia spectabilis. Phytochemistry, 60, 167-173 (2002) https://doi.org/10.1016/S0031-9422(02)00101-2
  9. Lee, J. -H., Hwang, B. Y., Kim, K. -S., Nam, J. B., Hong, Y. S., and Lee, J. J., Suppression of RelA/p65 transactivation activity by a lignoid manassantin isolated from Saururus chinensis. Biochem. Pharmacol., 66, 1925-1933 (2003) https://doi.org/10.1016/S0006-2952(03)00553-7
  10. Lee, W. S., Lee, D. -W., Baek, Y. -I., An, S. -J., Cho, K.- H., Choi, Y. -K., Kim, H. -C., Park, H. -Y., Bae, K. -H., and Jeong, T. -S., Human ACAT-1 and -2 inhibitory activities of saucerneol B, manassantin A and B isolated from Saururus chinensis. Bioorg. Med. Chem. Lett., 14, 3109-3112 (2004) https://doi.org/10.1016/j.bmcl.2004.04.023
  11. Modur, V., Zimmerman, G. A., Prescott, S. M., and McIntyre, T. M., Endothelial cell inflammatory responses to tumor necrosis factor-${\alpha}$. Ceramide-dependent and -independent mitogen-activated protein kinase cascades. J. Biol. Chem., 271, 13094-13102 (1996) https://doi.org/10.1074/jbc.271.22.13094
  12. Mosmann, T., Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 65, 55-63 (1983) https://doi.org/10.1016/0022-1759(83)90303-4
  13. Pfeffer, K., Matsuyama, T., Kundig, T. M., Wakeham, A., Kishihara, K., Shahinian, A., Wiegmann, K., Ohashi, P. S., Kronke, M., and Mak, T. W., Mice deficient for the 55 kd tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to L. monocytogenes infection. Cell, 73, 457-467 (1993) https://doi.org/10.1016/0092-8674(93)90134-C
  14. Pober, J. S. and Cotran, R. S., Cytokines and endothelial cell biology. Physiol. Rev., 70, 427-451 (1990)
  15. Rao, K. V. and Alvarez, F. M., Manassantins A/B and saucerneol: Novel biologically active lignoids from Saururus cernuus. Tetrahedron Lett., 24, 4947-4950 (1983) https://doi.org/10.1016/S0040-4039(01)99818-1
  16. Rao, K. V., Puri, V. N., Diwan, P. K., and Alvarez, F. M., Preliminary evaluation of manassantin A, a potential neuroleptic agent from Saururus cernuus. Pharmacol. Res. Commun., 19, 629- 638 (1987) https://doi.org/10.1016/0031-6989(87)90117-2
  17. Rho, M. C., Kwon, O. E., Kim, K., Lee, S. W., Chung, M. Y., Kim, Y. H., Hayashi, M., Lee, H. S., and Kim, Y. K., Inhibitory effects of manassantin A and B isolated from the roots of Saururus chinensis on PMA-induced ICAM-1 expression. Planta Med., 69, 1147-1149 (2003) https://doi.org/10.1055/s-2003-818007
  18. Ross, R., Atherosclerosis - An inflammatory disease. N. Engl. J. Med., 340, 115-126 (1999) https://doi.org/10.1056/NEJM199901143400207
  19. Springer, T. A., Traffic signals for lymphocyte recirculation and leukocyte emigration: The multistep paradigm. Cell, 76, 301- 314 (1994) https://doi.org/10.1016/0092-8674(94)90337-9
  20. Stannard, A. K., Riddell, D. R., Bradley, N. J., Hassall, D. G., Graham, A., and Owen, J. S., Apolipoprotein E and regulation of cytokine-induced cell adhesion molecule expression in endothelial cells. Atherosclerosis, 139, 57-64 (1998) https://doi.org/10.1016/S0021-9150(98)00052-5
  21. Surapisitchat, J., Hoefen, R. J., Pi, X., Yoshizumi, M., Yan, C., and Berk, B. C., Fluid shear stress inhibits TNF-${\alpha}$ activation of JNK but not ERK1/2 or p38 in human umbilical vein endothelial cells: inhibitory crosstalk among MAPK family members. Proc. Natl. Acad. Sci. U.S.A., 98, 6476-6481 (2001) https://doi.org/10.1073/pnas.101134098
  22. Tsuchiya, S., Yamabe, M., Yamaguchi, Y., Kobayashi, Y., Konno, T., and Tada, K., Establishment and characterization of a human acute leukemia cell line (THP-1). Int. J. Cancer, 26, 171-176 (1980) https://doi.org/10.1002/ijc.2910260208
  23. Van der Wal, A. C., Das, P. K., Tigges, A. J., and Becker, A. E., Adhesion molecules on the endothelium and mononuclear cells in human atherosclerotic lesions. Am. J. Pathol., 141, 1427-1433 (1992)
  24. Vaporciyan, A. A., Jones, M. L., and Ward, P. A., Rapid analysis of leukocyte-endothelial adhesion. J. Immunol. Methods, 159, 93-100 (1993) https://doi.org/10.1016/0022-1759(93)90145-W
  25. Zhang, W. J. and Feri, B., ${\alpha}$-Lipoic acid inhibits TNF-${\alpha}$-induced NF-${\kappa}$B activation and adhesion molecule expression in human aortic endothelial cells. FASEB J., 15, 2423-2432 (2001) https://doi.org/10.1096/fj.01-0260com