DOI QR코드

DOI QR Code

CONNECTEDNESS IN INTUITIONISTIC FUZZY TOPOLOGICAL SPACES

  • KIM, YONG-CHAN (Department of Mathematics Kangnung National University) ;
  • ABBAS S. E. (Department of Mathematics Faculty of Science South Valley University)
  • Published : 2005.01.01

Abstract

We introduce the notion of (r,s)-connected sets in intuitionistic fuzzy topological spaces and investigate some properties of them. In particular, we show that every (r,s)-component in an intuitionistic fuzzy topological space is (r,s)-component in the stratification of it.

Keywords

References

  1. K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986), 87-96 https://doi.org/10.1016/S0165-0114(86)80034-3
  2. K. Atanassov, New operators defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems 61 (1993), 131-142
  3. K. Atanassov and G. Gargov, Elements of intuitionistic fuzzy logic, Fuzzy Sets and Systems 95 (1998), 39-52 https://doi.org/10.1016/S0165-0114(96)00326-0
  4. C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190 https://doi.org/10.1016/0022-247X(68)90057-7
  5. K. C. Chattopadhyay, R. N. Hazra and S. K. Samanta, Gradation of openness: Fuzzy topology, Fuzzy Sets and Systems 49 (1992), 237-242 https://doi.org/10.1016/0165-0114(92)90329-3
  6. K. C. Chattopadhyay and S. K. Samanta, Fuzzy topology: fuzzy closure, fuzzy compactness and fuzzy connectedness, Fuzzy Sets and Systems 54 (1993), 207-212 https://doi.org/10.1016/0165-0114(93)90277-O
  7. D. Coker, An introduction of intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 88 (1997), 81-89 https://doi.org/10.1016/S0165-0114(96)00076-0
  8. D. Coker and M. Demirsi, An introduction to intuitionistic fuzzy topological spaces in Sostak's sense, Busefal 67 (1996), 67-76
  9. U. Hohle and A. P. Sostak, A general theory of fuzzy topological spaces, Fuzzy Sets and Systems 73 (1995), 131-149 https://doi.org/10.1016/0165-0114(94)00368-H
  10. U. Hohle, Axiomatic Foundations of Fixed-Basis fuzzy topology, Handb. Fuzzy Sets Ser. Kluwer Acad. Publ., Dordrecht (Chapter 3) 3 (1999)
  11. Y. C. Kim, Stratifications of smooth fuzzy topological spaces, J. Fuzzy Math. 9 (2001), no. 2, 381-390
  12. Y. C. Kim and Y. S. Kim, Connectedness in smooth fuzzy topological space, Far East J. Math. Sci. 5 (2002), no.3, 165-180
  13. T. Kubiak and A. P. Sostak, Lower set-valued fuzzy topologies, Quaest. Math. 20 (1997), no.3, 423-429 https://doi.org/10.1080/16073606.1997.9632016
  14. E. P. Lee and Y. B. Im, Mated fuzzy topological spaces, Int. Journal of fuzzy logic and intelligent systems 11 (2001), no. 2, 161-165
  15. Y. M. Liu and M. K. Luo, Fuzzy topology, World Scientific Publishing Co. Sin- gapore, 1997
  16. R. Lowen, Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl. 56 (1976), 621-633 https://doi.org/10.1016/0022-247X(76)90029-9
  17. R. Lowen, Connectedness in fuzzy topological spaces, Rocky Mountain J. Math. 11 (1981), 427-433 https://doi.org/10.1216/RMJ-1981-11-3-427
  18. W. Peeters, Subspaces of smooth fuzzy topologies and initial smooth fuzzy struc-tures, Fuzzy Sets and Systems 104 (1999), 423-433 https://doi.org/10.1016/S0165-0114(98)00318-2
  19. P. M. Pu and Y. M. Liu, fuzzy topology I, Neighbourhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. 76 (1980), 571-599 https://doi.org/10.1016/0022-247X(80)90048-7
  20. A. A. Ramadan, Smooth topological spaces, Fuzzy Sets and Systems 48 (1992), 371-375 https://doi.org/10.1016/0165-0114(92)90352-5
  21. S. K. Samanta and T. K. Mondal, Intuitionistic gradation of openness: intu- itionistic fuzzy topology, Busefal 73 (1997), 8-17
  22. S. K. Samanta, On intuitionistic gradation of openness, Fuzzy Sets and Systems 131 (2002), 323-336 https://doi.org/10.1016/S0165-0114(01)00235-4
  23. A. P. Sostak, On a fuzzy topological structure, Rend. Circ. Mat. Palermo(2)Suppl. 11 (1985), 89-103
  24. A. P. Sostak, On the neighbourhood structure of a fuzzy topological space, Zb. Rad. 4 (1990), 7-14
  25. A. P. Sostak,Basic structures of fuzzy topology, J. Math. Sci. 78 (1996), no. 6, 662-701 https://doi.org/10.1007/BF02363065
  26. X. D. Zhao, Connectedness on fuzzy topological spaces, Fuzzy Sets and Systems 20 (1986), 223-240 https://doi.org/10.1016/0165-0114(86)90079-5