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SOME RESULTS ON CONVERGENCE IN
DISTRIBUTION FOR FUZZY RANDOM SETS

SANG YEOL J0oO, GYEONG SUK CHOI,
Joong Sung KwoON AND YUN KyoNG KiM

ABSTRACT. In this paper, we first establish some characterization
of tightness for a sequence of random elements taking values in the
space of normal and upper- semicontinuous fuzzy sets with compact
support in RP. As a result, we give some sufficient conditions for a
sequence of fuzzy random sets to converge in distribution.

1. Introduction

The theory of fuzzy sets introduced by Zadeh [17] has been exten-
sively studied and applied in the area of probability theory in recent
years. Since Puri and Ralescu [12] introduced the concept of a fuzzy
random variable as a natural generalization of random set, there have
been increasing interests in limit theorems for fuzzy stochastic processes
because of its usefulness in several applied fields (e.g., [5], [9], [10], [14-
16} and so on). In order to obtain limit theorems for fuzzy random
variables, many authors have used the theory of Banach space-valued
random variables by embedding the space of fuzzy numbers(i.e., normal,
upper semicontinuous and convex fuzzy sets with compact support) into
a proper Banach space. But this approach may not be valid any more
if we exclude the convexity condition.

The theory of convergence in distribution for random sets was given
by Artstein [1], Salinetti and Wets [13]. Recently, Joo and Kim [7] gave
some characterizations of convergence in distribution and tightness for
fuzzy random variables. We distinguish between a fuzzy random variable
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and a fuzzy random set; a fuzzy random variable is a random element
taking values in the space of fuzzy numbers, whereas a fuzzy random
set is a random element taking values in the space of more general fuzzy
sets without convexity.

In this paper, we first establish another characterization of tightness
for fuzzy random sets and apply it to obtain some sufficient conditions
for a sequence of fuzzy random sets to converge in distribution.

2. Preliminaries

Let K(RP) denote the family of non-empty compact subsets of the
Euclidean space RP. Then K(RP) is metrizable by the Hausdorff metric
h defined by

h(A,B) = inf |a—b inf |a— b|}.
(4, B) max{zlelgblgB la —bl, sup inf, |la — b}

A norm of A € K(RP) is defined by

|Al| = h(4,{0}) = igglal-

It is well-known that IC(RP) is complete and separable with respect to
the Hausdorff metric h.

In what follows, clA denotes the closure of a set A C RP. Let F(RP)
denote the family of all fuzzy sets & : R — [0,1] with the following
properties;

(1) 4 is normal, i.e., there exists € RP such that @(z) = 1;
(2) 4 is upper semicontinuous;
(3) supp@ = cl{z € RP : 4(z) > 0} is compact.

For a fuzzy set 4 in RP, the following notations will be used frequently;

. {{a;:~(a:)2a}, fo<a<l
Lya = N .
supp u, ifa=0,

Lo+t =cl{z € R? : a(z) > a}.
Then, it follows immediately that

@ € F(RP) if and only if L,u € K(RP) for each a € [0, 1],
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and
}}fn h(Lgti, Lo+@) = 0 for each a € [0, 1].

Now if we define
(2.1) ja(0) = AL, Lord)
then it is known that {a : ja{a) > €} is finite for each ¢ > 0 and so
{a: ja(a) > 0} is countable for all & € F(RP).

The uniform metric on F(RP) is usually defined as follows:

(2.2) doo(@,0) = sup h(La@, La?).

0<a<l

Also, the norm of 4 is defined as

where 0 = I {0} is the indicator function of {0}.

Then it is well-known that F(RP) is complete but is not separable
with respect to the metric doo. Joo and Kim [6] introduced a metric d
on F(RP) which makes it a separable space as follows:

DEFINITION 2.1. Let T denote the class of strictly increasing, con-
tinuous mapping of [0, 1] onto itself. For @, 0 € F(RP), we define

d,(i, ) = inf{e > 0 :there exists a t € T such that
sup [t(a) — a| < € and doo (@, £(0)) < €},
0<a<l1

where t(?) denotes the composition of ¢ and ¢.

This metric ds will be called the Hausdorff-Skorohod metric. It is well-
known that the metric space (F(RP),d;) is separable and topologically
complete.

For w € F(RP) and 0 < § < 1, we define,

2.3 ,0) = inf max h(L,, @, L U
(23) 7(39) {ai}1<i<r )
where the infimum is taken over all partitions 0 = ag < a1 < -+ - < @ =

1 of [0.1] satisfying min (o; — aj—1) > 4.
1<i<r
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THEOREM 2.2. Let K be a subset of the metric space (F(RP),ds).
Then K is relatively compact if and only if

(2.4) sup ||@] < oc
ucK
and
(2.5) lim sup 7(i,8) = 0.
§—03eK

3. Main results

In this section, we assume that K(RP) and F(RP) are the metric
spaces endowed with the metrics A and dg, respectively. Also, it is
assumed that the Cartesian product K¥(RP) of k-copies of KC(RP) is
endowed with the product topology.

Let (2, A, P) be a probability space. A set valued function X : Q@ —
IC(RP) is called a random set if it is measurable. Also, A fuzzy set valued
function X : Q — F(RP) is called a fuzzy random set if it is measurable.
It is well-known that X is a fuzzy random set if and only if for each
a € [0,1], Lo X is a random set (For details, see Butnariu [3], Colubi et
al. [4] and Kim [8]).

Since F(RP) is separable and topologically complete, we can apply the
notions of tightness and convergence in distribution for random elements
in a complete separable metric space which can be found in Billingsley
[2], Prohorov [11}.

DEFINITION 3.1. Let X, X be fuzzy random sets.
(1) {X,} is said to be tight if for every € > 0, there exists a compact
subset K of F(RP) such that

P(X, ¢ K) < ¢ for all n.

(2) {X,.} is said to converge in distribution to X and write X, = X
if for any bounded continuous function f : F(RP) — R,

/f(X’n) dP—»/f(f() dP.

Joo and Kim [7] gave some relationships between tightness and con-
vergence in distribution for fuzzy random sets. For easy reference, we
enumerate the results of it.
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THEOREM 3.2. {X,} is tight if and only if the following two condi-
tions are satisfied.

(1) For each n > 0, there exists a A > 0 such that for all n,
P(| Xl > A) < 7.

(2) For each € > 0 and n > 0, there exists a 6 € (0,1) such that for
all n, R
P{r(X,,0) > €} <n.

Now we define, for each fuzzy random set X,
Iy ={a €[0,1]: L, is continuous almost surely [Pg|},

where Py is the probability distribution of X. Thena el % if and only
if P{w:jz(,(a) >0} =0. Also, it is known that Iy contains 0-and 1,
and [0,1]\ I is at most countable.

For ay,... a4 €]0,1], if we define Lo, ... o, : F(RP) — KF(RP) by

Lalv"'sak (,a) = (La aa e aLaka)v

1

then Lq, ... ., is Borel measurable. If aq,... ,ar € I, then L, .. oy
is continuous a.s. [P], and so

But the converse is not true.

THEOREM 3.3. If{X,} is tight and if for all ay, ... ,ax € I3 with k
arbitrary,

yeen

then Xn = X.

Now we wish to establish another characterization of tightness and
apply it to convergence in distribution for fuzzy random sets. To this
end, we first have to obtain another characterization of compactness on
the space F(RP). This will be proceeded with replacing (2.5) by other
conditions.

For 0 < § < 1 and @ € F(RP), we define

(3.1) p(@,0) = sup h(Lyt,Lg@) A h(Lyt, L,a).
Bagy
Y—B<é
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LEMMA 3.4. For 0 <6 <1 and @ € F(RP), we have

p(a,6) < 7(a, ).

Proof. Let 7(@,0) < e. Then there exists a partition 0 = oy < a1 <
-+ < ap = 1 satisfying o; — a;_1 > 6 such that

h(Lq, 1, Loﬁ“_lﬁ) < e for all 4.

Let o, 8,7 € [0,1] such that v — 8 < § and 8 < a < 7. Then either
;-1 <3<y < for some 4, or ;1 < 0 < a; <y < a4 for some i,
If ;1 < B <+v<a, then

h(Lot, Lgt) A h(Lo@, Lyit) < h(Lg, @, L_+ @) < €.
fo1 <f<a; <y < and a < a;, then
h{(Lo%, Lgu) < h(LaiﬁvLaj_lﬁ) <e.
Ifoa_1 <fB<a; <y <o and a > a5, then
h(Lo%, Ly@) < h(La,,, 14, La;“a) < e.

In any cases, we have h(Ly@, Lgt) A h(La%, Ly%) < €. This implies
p(i,8) < € and so we complete the proof. O

The following example shows that the inequality in the above Lemma
may be strict.

ExXaMPLE 1. Let 0 < A < 1 and define
1, ifxz=0
ux(z)=4¢ A, f0<|z|<1
0, elsewhere.
Then,

N {z:]z] <1}, f0<a<A
Lau A= .

{0}, fA<a<l.
Thus, p(ax,d) =0, but 7(ay,d) =1 for § > A.

The above example shows that there can be no compactness condi-
tion if we replace (2.4) only by a condition in terms of p(@, §). However,
we can formulate a compactness condition by assuming additional con-

ditions for the behavior of L, near 0 and 1.
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LEMMA 3.5. If <o) <as <~vyand~y— <4, then

h(Le, @i, Lgit) A h(La, i, Ly @) < p(i, 6).

Proof. If h(Lq, @, Lgt) > p(, ), then by definition of p(@, d),
h(La, i, Lyii) < p(i, 5).

Thus,
M(Layit, Lay) < p(ii,6)

and
h(Lo, @, Lyi) < p(a@,6).

Similarly, it can be proved that if h(La, @, Ly@) > p(%, ), then h{Ly, @,
Ls@) < p(a,6). This completes the proof. O
LemMA 3.6. For each u € F(RP), we have

(@, 8) < 3[p(@, 26) V h(Lasdi, Loti) V h(L1_ssil, L1)]-

Proof. Let € > [p(@,26) V h(Lasti, Lot) V h(Ly_2s%, L1%)]. First we
note that if 0 < a; < as < 1 and jz(oy) > €,i =1,2, then

ay — ap > 26.
For, if ag — o7 < 26, then there exist G;,7 = 1, 2 such that
B <oy <az < By and By — B < 26.
Then since jz(a;) > €, we have for each v € (a1, a2),
h(Lg, 4, Ly0) > €, i =1,2.
But this contradicts to the fact that
h(Lg, i, Lyii) A h(Lg, @, Lyii) < p(it, 26) < €.
Also, since € > h(Last, Lot) V h(Li—_2s%, L1 1), we have

Ja(a) < e for each a € [0,25) U (1 — 24, 1].
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Now let us define 3y = 0 and
1, if {a: ja(a) > €} =10,
b= { inf{a : ja(a) > €}, otherwise,
1, if {a> 61 :jala) >et =0,
br = { inf{a > (1 : ja(a) > €}, otherwise.

Repeating this process, we obtain a partition 0 = By < f; < --- <
Bk =1 of [0,1] such that 8; — B;—1 > 24 and

{a:ja(e) > et ={B1,...,Be-1}-
If B —B;j—1 > 26 for some j, we enlarge {;} by including their midpoint
(Bj—1 + B;j)/2. Continuing in this way, we obtain a new partition 0 =
Bo <1 << pB.=10f[0,1] such that § < §; — Bi—1 < 2§ and any
point « satisfying jg(a) > € is one of the {B; :i=1,...,7}.
Now it suffices to show that

h(Lg i, Lﬁ;r_lﬁ) < 3¢ for each 1.
Let us define
vir = sup{y € (Bi-1,Bi] : h(Ly@, Lg+ @) <€},
Yiz = inf{y € (Bi-1, 8] : h(Lyi, Lg, @) < €}

If ;1 < ~ie, then there exist a;1, a9 satisfying v, < a1 < aye < Y40
such that

h(La,, 1, Lﬁj_lzl) > ¢ and h(Lq U, L i) > €.

But by Lemma 3.5,
h(La, @, Lg, @) A h(La,@, La,a) < p(,26) < e,

which leads to the contradiction. Thus, v;1 > ~;2. Now it is obvious
that

h(LAmﬁ,Lﬁj_lﬂ) < eand h(L"ﬁZﬂ’ Lp i) <e.
Also, since §;—1 < 7:2 < Bi, we have by construction of {3;},

ja(viz) < e
Thus, it follows from the fact v;; > ;2 that
h(Lp,,Lg+ @) < h(Lg,8, Ly @) + ja(Viz) + h(Lyy, @, Lys @)
< 3e.

This completes the proof. A
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THEOREM 3.7. Let K be a subset of (F(RP), ds). Then K is relatively
compact if and only if (2.4) holds and

(3.2) lim sup p(%,d) =0,
00 geK

(3.3) lim sup h(Lst, Loi) = 0,
6—0 5K

(3.4) lim sup h(L;_s, Ly@) = 0.
-0 g3eK

Proof. 1t suffices to show that (2.5) is equivalent to (3.2), (3.3) and
(3.4). Let (2.5) hold. Then (3.2) follows from Lemma 3.4. Also, (3.3)
and (3.4) follow immediately from the inequality

h(L(;’&,, Loﬁ,) \% h(Ll_(s’&,, L]’ll) < 7'(71, 5)
The reverse implication is obvious from Lemma 3.6. O

Now we are in a position to characterize tightness of fuzzy random
sets.

THEOREM 3.8. {f( n} is tight if and only if the following two condi-
tions hold:

(1) For each € > 0, there exists a A > 0 such that for all n,
(3.5) P{w: | Xn(w)]| = A} <e

(2) For each € > 0 and n > 0, there exists a § € (0,1) such that for
all n,

Plw: p(Xn(w),8) 2} < e
(3.7) P{w: h(LoXn(w), LsXp(w)) > n} <€
P{w: h(Ly_sXn(w), 11 X, (w)) > 1} <

Proof. (Necessity): Suppose that {Xn} is tight. Then for given ¢ > 0
and n > 0, there exists a compact subset K of F(RP) such that

P(X, ¢ K) < ¢ for all n.
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By Theorem 3.7, we have that
K C{a:||a]] <A} for sufficiently large A,
and for sufficiently small 4,
K c{a: p(a,6) V h(Lst, Low) V h(Ly 50, L17) < n}.

Therefore, (1) and (2) are satisfied.
(Sufficiency): Suppose that (1) and (2) are satisfiec. For given € > 0,
we can choose A > 0 so that

P(IX.q) > N < -;- for all .
Then for each natural number m, we can choose 4,, so that

)< o

P(p(Xp,8m) V 1L, X, LoXn) V h(Ly—5,, X, L1X,) > —) < TS

1
m
for all n. Let A = {&@: |4l < A} and
1
A, = {’lNI, : p(’ll7 5m) vV h(Lam’&,,Loﬂ,) \Y% h(L1_§m’l~L, Llﬂ) < E}
If K is the closure of AN (NY¥_;An), then K is compact by Theorem

3.7. Thus the tightness of {X,} follows since

P(X,¢ K)<P(X,¢ A+ i P(X, ¢ A,) <e.

m=1

g

Since F(RP) is separable and topologically complete, a single fuzzy
random set is tight. Thus we have the following modified form.

THEOREM 3.9. {X,} is tight if and only if

(3.9 )\li_)r{)lolir,rln_’solip P{| X, > A} =0

and for each n > 0,

(3.10) }i—lghisolip P{p(X,,0) >n} =0

(3.11) }Enliﬂsolip P{h(LoXn,LsXn) >n} =0
(3.12) (mnisogp P{h(L1_5Xn, L1 X,) > n} = 0.
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THEOREM 3.10. Suppose that for each € > 0 and n > 0, there exist
ad € (0.1) and an integer ng such that

(3.13) Plw: p(X,(w),8) >n} <e forn>ny.

If La......0,(Xn) = La,,...o,(X), whenever the o all lic in Iy with k
arbitrary, then
X, = X.

Proof. 1t suffices to prove that {X,} is tight. Since (3.13) is equiva-
lent to (3.10), we need to check (3.9), (3.11) and (3.12).

(3.9) follows easily from the fact that {LoX,} is tight since it con-
verges in distribution to LoX.

For (3.11), we note that by right continuity at 0 of L,.X,

P(h(Lo X, LoX) 2n) <¢
for sufficiently small «. By hypothesis,
(LoXpn, LaXy) = (LoX, Lo X) if a € I5.
By the well-known mapping theorem.
MLaXn, LoXn) = M(LoX, LoX) if a € I4.

Hence we have for sufficiently small a € [,

limsup P(R(LaXn, LoXy) > n) < P(h(LoX,LoX) > 1) < e

n—0oc

Therefore, (3.11) is satisfied. Similarly, (3.12) can be proved by left
continuity at 1 of L,X. O
The next example shows that the condition (3.13) cannot be removed.
EXAMPLE 2. For each n > 2, let
1, ifxe=0
dn(z) =4 34+ £(1—lz}), H0<|z|<1

0, otherwise,
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and
1, ifz=0
w(r)=4q 3, if0<|z|<1
0, otherwise.
Then
{z : |z| £ 1}, if0<a<1/2
Loiin =% {z:|z]<1=(a=3)n}, ifl/2<a<1/2+1/n
{0}, if1/2+1/n<a <1,
and

I g {z:|z] <1}, f0<a<1/2
““_{{o}, if1/2<a<l.
First we note that {i,} does not converge. For, if {@,} converge to v
for some © € F(RP), then there exists a sequence of functions {¢,} in T
such that

lim ¢, () = « uniformly in [0, 1]

=00
and
lim doo (tn(4n),?) = 0.
n—0
For each « € [0,1], if we take a;, =t (), then
oan — a and L, Un — Lo0.

Then, we should have & = @. But for each t € T, duo(iin, t(@)) > 1/2
and so ds(y,, @) > 1/2. This implies that {in} does not converge.
Thus if we take X,, = 4, and X = 1, then

X, X.
But if @ <1/2, then
LoX,=L,X = {z:|z] <1}
If @ > 1/2, then for 1/n < o —1/2,
Lo X, = Lo X = {0}.
Thus
Loy....0n(X0) = La,.. 0 (X) for all aq,..., a4 € [0,1).

We note that {X,} does not satisfy the condition (3.13). For, by defi-
nition of p(i,,d), we have
5, ifd<1/n,

i, 8) =
pltn; ) { 1, ifé>1/n.
Thus, for each 7 > 0, P{p(X,,8) > n} = 1 for large n.
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THEOREM 3.11. Suppose that there exist a non-decreasing continu-
ous function g on [0,1] and a > 0,b > 1 such that fora <y< f,e>0
and for all large n,

(3.14) P{h(LaKn, Ly Kn) AR(Ly K, LoXn) 2 €} < = [9(8) - g(a)]"

6(1
If Lo, ... o (Xn) = La,... o, (X), whenever the o; all lie in Iy with k
arbitrary, then ) )
X, = X.
To prove this, we need some lemmas. First for a fixed fuzzy random
set X and o, 9 € [0,1] such that o + ¢ € [0, 1], we define

(3.15) ém = max h(LaX, Loy isX) NA(Lgyi5X, LapsX)

0<i<m

where m is a positive integer.

LEMMA 3.12. Suppose that fora <~y <8 ,¢e¢>0,

1

(316)  P{h(LaX.L,X) Ah(L,X,LsX) 2 ¢} < —[9(8) - g(0)]’

€

where a > 0,b > 1 and g is a non-decreasing continuous function on
[0,1]. Then

(3.17) P{&n > €} < g[g(a +6) — g(@)]’,

where M = M, is a constant depending only on a and b.

Proof. We shall prove by induction on m. The case m =1 or m =2
is trivial.

Assume that (3.17) holds for all integers smaller than m. We can
choose an integer g, 1 < ¢ < m so that

(1_16)S g(a+5)+g(a) Sg(a—!-ié)

Nl
(3.18) gla+ - > -

Let us define

(8.19) = max A(LaX,LoyssX) N(LayssX LoyazsX),
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(320) 2= max h(Lapa X, Loy i5X) AR(Lgy 16X, LatsX).

q<ism
Then by the induction hypothesis, we have

Pin 2 6 < oo+ L20) - gl

and M
Pin > €} < Slgla+6) — gla+ 1)

By (3.18), we have

(3.21) P 2 6} < g lolet8) - glo))
and

M b
(322 P 2 €} < spzlofa+6) = g(a))".

Now for 0 < i < m, let
$(i) = h(LaX, Loy i5X) N(Lqy 15X, LatrsX)

and define

ns = max{y(g — 1),9(a)}-
Then by (3.16),

(3:23) Plns > 6} < Zgla+6) - gl
Now we show that &, < max(n,n2) +n3. If 0 <7< g—1, then
h(La+-n%5X7 Lo+sX)
< h(La+#5)~(,La+%5X') + h(L
and so
W(LoX, Loy 1 5X) ANA(Loy s 5X, LatsX)
< W(LaX, Loy s5X) A h(La+#5X,La+q_;;_15X')
+W(LaX, Loy az15X) ALy az15X, LaysX)
< m +ns.
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Similarly, if ¢ < i < m, then
WLoX, Loy 15X) <h(LaX, Loy 25X) + Loy 25X, Loy isX),
and so
h(Lo X, La+#5)2) AP(Lgy 15X, LaysX)
< h(LaX, Loy 2sX) A(Loy 26X, LatsX)

+h(Las 25X, Loy i5X) A WLy is5X, LatsX)
< n3 4+ 2.

In any cases. we have &, < max(ni,n2)+n3. Therefore, by (3.21), (3.22)
and (3.23), we obtain for 0 < €1 <,

P{¢,. > €}
<P{m>eat+P{m>eal+Pln>c—c}

1-b
R AR

<[

Note that if ¢y and ¢; are positive numbers, then a function

Co C1

H=24 "L O<t<e
1/(a+1)
has the minimum value }n[cé/(aﬂ) +ci/(a+l)]“+1 at t = 1/(+§>)+1/(a—+1)
o ©1

Thus, we have by choosing €; properly,

P{&m > €}
< {214 gl g 4 5) — gfa)]”

Ea
Since b > 1, it follows that for sufficiently large M,

(]\[21—b)1/(a+1) + o1/ (a+1) < ML/ (at1)

Therefore. we obtain the desired result. O
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LeMMA 3.13. For fixed & € F(RP) and a, 6 € [0, 1] such that a+6 €
[0,1], let

p(t, (o, +6]) = sup h(Lal, Lgt) A h(Lgt, Lotst).
a<B<ats

Then the followings hold:
(1) p(a,0) = sup p(i, [0, 0+ 3)).
0<akLl~4
(2) For each positive integer r,
1 .t i+1
Y < h
plih o) < max o, [, —

Proof. (1) is trivial. To prove (2), let M be the right-hand side. If
6= %, then both « and a4 ¢ lie in one of 2r — 1 intervals listed in the
right-hand side. Thus, p(%, [0, @ + 2]) < M and so

1 1
p(ﬁ’a———) = sup p(ﬁ" [ava‘{'_—-]) éM
This completes the proof. O

Proof of Theorem 3.11:. It suffices to prove (3.13). For fixed o, 6 €
[0,1] such that a+ 4§ € [0,1], let

£n) = [max W(LaXn, Loy 15Xn) A(Lgy 16X, Lats Xn)-

Then by Lemma 3.12 , for large n,

He

(3.24) PIER > ¢ < L lola+0) - gl

where M = M, is a constant depending only on a and b.

Since Lo X is left continuous on [0,1] as a function of a, letting m —
00, (3.24) yields that for large n,

P{p(Rn lovor +0)) 2 €} < 2 [g(ac+ ) = g(a0)]”



Some results on convergence 187
By Lemma 3.13, it follows that for large n,

P{p(Xn,1/2r) 2 €}

< ép{n(xn,[;"jln >

+§:P{pu€n,[§+§;, oDz
< f—ftl[gﬁjl) e S Ly g Ly
<ty sy b - oo

€ la—B|<1/r
Since b > 1 and g is continuous, we have

sup |g(a) —g(B)"t — 0 asr — oo,
jaBI<1/r

which proves the desired result. O

COROLLARY 3.14. Suppose that there exist a non-decreasing contin-
uous function g on [0,1] and a > 0,b > 1 such that for all large n,

(3.25) P{h(LoXn, LpX,) > €} < '6“1;[9(5) —g(a)]”

fora < 3,e>0. If Ly ... (,k(X'n) = Lal,,‘,,ak(_i’), whenever the o; all
lie in Iy with k arbitrary, then

X, = X.
Proof. Tt follows from Theorem 3.11 and the inequality that for o <
v < 8.

I LaXn, LpXn) > h(LaXn, LyXn) AR(LyXn, LaX,).
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